cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A134158 a(n) = 1 + 27n + 252n^2 + 882n^3 + 1029n^4.

Original entry on oeis.org

1, 2191, 24583, 109513, 324013, 759811, 1533331, 2785693, 4682713, 7414903, 11197471, 16270321, 22898053, 31369963, 42000043, 55126981, 71114161, 90349663, 113246263, 140241433, 171797341, 208400851, 250563523, 298821613, 353736073, 415892551, 485901391
Offset: 0

Views

Author

Artur Jasinski, Oct 10 2007

Keywords

Comments

A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380).
This sequence is the case when n is congruent to 1 mod 7.
A134159 is the case when n is congruent to 2 mod 7.
A134160 is the case when n is congruent to 4 mod 7.
A134161 is the case when n is congruent to 5 mod 7.
A133180 is the union of this sequence, A134159, A134160, and A134161.

Crossrefs

Programs

  • Mathematica
    Table[(3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7, {n, 0, 100}] (* or *) Table[Sum[k^6, {k, 1, 7n + 1}]/Sum[k^2, {k, 1, 7n + 1}], {n, 0, 100}] (* Artur Jasinski *)
  • PARI
    Vec((1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4) / (1 - x)^5 + O(x^30)) \\ Colin Barker, Aug 12 2017

Formula

a(n) = (3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7.
a(n) = (Sum_{k=1..7n+1} k^6) / (Sum_{k=1..7n+1} k^2).
G.f.: -(1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. - Colin Barker, Aug 12 2017
Showing 1-1 of 1 results.