A134161 a(n) = 373 + 1947*n + 3780*n^2 + 3234*n^3 + 1029*n^4.
373, 10363, 61723, 210901, 539041, 1151983, 2180263, 3779113, 6128461, 9432931, 13921843, 19849213, 27493753, 37158871, 49172671, 63887953, 81682213, 102957643, 128141131, 157684261, 192063313, 231779263, 277357783, 329349241
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[(3(7n + 5)^4 + 6(7n + 5)^3 - 3 (7n + 5) + 1)/7, {n, 0, 100}] Table[Sum[k^6, {k, 1, 7n + 5}]/Sum[k^2, {k, 1, 7n + 5}], {n, 0, 100}] LinearRecurrence[{5,-10,10,-5,1},{373,10363,61723,210901,539041},100] (* Harvey P. Dale, Nov 25 2012 *)
-
PARI
a(n)=373+1947*n+3780*n^2+3234*n^3+1029*n^4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (3*(7*n + 5)^4 + 6*(7*n + 5)^3 - 3*(7*n + 5) + 1)/7.
a(n) = (Sum_{k=1..7*n+5} k^6) / (Sum_{k=1..7*n+5} k^2).
G.f.: -(373+8498*x+13638*x^2+2186*x^3+x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0)=373, a(1)=10363, a(2)=61723, a(3)=210901, and a(4)=539041. - Harvey P. Dale, Nov 25 2012
Comments