cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134168 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y.

Original entry on oeis.org

1, 3, 9, 30, 111, 438, 1779, 7290, 29871, 121998, 496299, 2011650, 8129031, 32769558, 131850819, 529745610, 2126058591, 8525561118, 34166421339, 136858609170, 548013994551, 2193796224678, 8780408783859, 35137313082330, 140596298752911, 562526359448238, 2250528981434379, 9003386657325090
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Examples

			a(2) = 9 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -35, 50, -24}, {1, 3, 9, 30}, 50] (* or *) Table[(1/2)*(4^n - 3^n + 3*2^n - 1), {n,0,50}] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = (1/2)*(4^n - 3^n + 3*2^n - 1).
a(n) = 3*StirlingS2(n+1,4) +2*StirlingS2(n+1,3) +2*StirlingS2(n+1,2) +1.
G.f.: -(5*x^3 - 14*x^2 + 7*x - 1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jul 30 2012