A134187 a(0)=1. a(n) = the number of terms of the sequence (from among terms a(0) through a(n-1)) which equal any "non-isolated divisors" of (2n). A divisor, k, of n is non-isolated if (k-1) or (k+1) also divides n.
1, 1, 2, 3, 3, 3, 6, 3, 3, 8, 3, 3, 10, 3, 3, 13, 3, 3, 14, 3, 3, 17, 3, 3, 18, 3, 3, 20, 4, 3, 23, 3, 3, 23, 3, 3, 27, 3, 3, 27, 4, 3, 31, 3, 3, 32, 3, 3, 34, 3, 5, 33, 3, 3, 37, 4, 4, 35, 3, 3, 43, 3, 3, 40, 3, 3, 45, 3, 3, 43, 8, 3, 50, 3, 3, 48, 3, 3, 53, 3, 8, 49, 3, 3, 59, 3, 3, 53, 3, 3, 62, 5
Offset: 0
Keywords
Examples
The positive divisors of 2*12=24 are 1,2,3,4,6,8,12,24. Of these, 1,2,3,4 are the non-isolated divisors of 24. There are 2 terms among the earlier terms of the sequence that equal 1, 1 term that equals 2, 7 terms which equal 3 and 0 terms which equal 4. So a(12) = 2+1+7+0 = 10.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Programs
-
PARI
up_to = 91; A134187list(up_to) = { my(v=vector(1+up_to)); v[1] = 1; for(n=1,up_to,v[1+n] = sum(k=0,n-1,my(u=v[1+k]); !((2*n)%u) && ((!((2*n)%(1+u))) || ((u>1)&&(!((2*n)%(u-1))))))); (v); }; v134187 = A134187list(up_to); A134187(n) = v134187[1+n]; \\ Antti Karttunen, Apr 06 2021
Extensions
Extended by Ray Chandler, Jun 25 2008
Comments