A134226 Triangle T(n, k) = 3*n - 4 if k = n-1 otherwise k, read by rows.
1, 2, 2, 1, 5, 3, 1, 2, 8, 4, 1, 2, 3, 11, 5, 1, 2, 3, 4, 14, 6, 1, 2, 3, 4, 5, 17, 7, 1, 2, 3, 4, 5, 6, 20, 8, 1, 2, 3, 4, 5, 6, 7, 23, 9, 1, 2, 3, 4, 5, 6, 7, 8, 26, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 35, 13
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 2; 1, 5, 3; 1, 2, 8, 4; 1, 2, 3, 11, 5; 1, 2, 3, 4, 14, 6; 1, 2, 3, 4, 5, 17, 7; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A134226:= func< n,k | k eq n-1 select 3*n-4 else k >; [A134226(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_]:= If[k==n-1, 3*n-4, k]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
-
Sage
def A134226(n,k): return 3*n-4 if k==n-1 else k flatten([[A134226(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 17 2021
Formula
T(n, k) = A134082(n, k) + A002260(n, k) - I, an infinite lower triangular matrix and I = Identity matrix.
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = 3*n - 4 if k = n-1 otherwise k.
Sum_{k=1..n} T(n, k) = A134227(n) = (n-1)*(n+6)/2 + [n=1]. (End)
Extensions
New name and more terms added by G. C. Greubel, Feb 17 2021