cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A134227 Row sums of triangle A134226.

Original entry on oeis.org

1, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, 1479, 1534, 1590, 1647, 1705, 1764, 1824, 1885, 1947
Offset: 1

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Comments

Essentially the same as A055999. - R. J. Mathar, Mar 28 2012

Examples

			a(4) = 15 = sum of row 4 terms of triangle A134226: (1 + 2 + 8 + 4).
a(4) = 15 = (1, 3, 3, 1) dot (1, 3, 2, -1) = (1 + 9 + 6 - 1).
		

Crossrefs

Cf. A134226.

Programs

  • Magma
    [1] cat [(n-1)*(n+6)/2: n in [2..70]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    Table[(n-1)*(n+6)/2 + Boole[n==1], {n, 70}] (* G. C. Greubel, Feb 17 2021 *)
    LinearRecurrence[{3,-3,1},{1,4,9,15},70] (* Harvey P. Dale, Aug 13 2024 *)
  • Sage
    [1]+[(n-1)*(n+6)/2 for n in (2..70)] # G. C. Greubel, Feb 17 2021
    

Formula

Binomial transform of (1, 3, 2, -1, 1, -1, 1, -1, 1, ...).
From G. C. Greubel, Feb 17 2021: (Start)
a(n) = (n-1)*(n+6)/2 + [n=1].
G.f.: x*(1 +x -x^3)/(1-x)^3.
E.g.f.: 3 + x + (-6 +6*x +x^2)*exp(x)/2. (End)

Extensions

Terms a(37) onward added by G. C. Greubel, Feb 17 2021
Showing 1-1 of 1 results.