A134231 Triangle T(n, k) = n -k +1 with T(n, n-1) = 2*n-1 and T(n, n) = 1, read by rows.
1, 3, 1, 3, 5, 1, 4, 3, 7, 1, 5, 4, 3, 9, 1, 6, 5, 4, 3, 11, 1, 7, 6, 5, 4, 3, 13, 1, 8, 7, 6, 5, 4, 3, 15, 1, 9, 8, 7, 6, 5, 4, 3, 17, 1, 10, 9, 8, 7, 6, 5, 4, 3, 19, 1, 11, 10, 9, 8, 7, 6, 5, 4, 3, 21, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 23, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 25, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 3, 1; 3, 5, 1; 4, 3, 7, 1; 5, 4, 3, 9, 1; 6, 5, 4, 3, 11, 1; 7, 6, 5, 4, 3, 13, 1; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A134231:= func< n,k | k eq n select 1 else k eq n-1 select 2*n-1 else n-k+1 >; [A134231(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_]:= If[k==n, 1, If[k==n-1, 2*n-1, n-k+1]]; Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
-
Sage
def A134231(n,k): return 1 if k==n else 2*n-1 if k==n-1 else n-k+1 flatten([[A134231(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 17 2021
Formula
T(n, k) = A004736(n, k) + A134081(n, k) - I, an infinite lower triangular matrix, where I = Identity matrix.
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = n - k + 1 with T(n, n-1) = 2*n - 1 and T(n, n) = 1.
Sum_{k=1..n} T(n, k) = (n-1)*(n+6)/2 + [n=1] = A134227(n). (End)
Extensions
More terms and title changed by G. C. Greubel, Feb 17 2021