A134238 Row sums of triangle A134237.
1, 5, 14, 28, 47, 71, 100, 134, 173, 217, 266, 320, 379, 443, 512, 586, 665, 749, 838, 932, 1031, 1135, 1244, 1358, 1477, 1601, 1730, 1864, 2003, 2147, 2296, 2450, 2609, 2773, 2942, 3116, 3295, 3479, 3668, 3862, 4061, 4265, 4474, 4688, 4907, 5131, 5360, 5594, 5833, 6077
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A134237.
Programs
-
Mathematica
LinearRecurrence[{3,-3,1},{1,5,14},50] (* or *) Rest[CoefficientList[Series[x*(2*x^2 + 2*x + 1)/(1-x)^3,{x,0,50}],x]] (* James C. McMahon, Apr 05 2025 *)
-
PARI
a(n)=(5*n^2-7*n+4)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
Binomial transform of (1, 4, 5, 0, 0, 0, ...).
a(n) = a(n-1) + 5*n - 6 (with a(1)=1). - Vincenzo Librandi, Nov 23 2010
a(n) = (5*n^2 - 7*n + 4)/2. - Charles R Greathouse IV, Jun 17 2017
From Elmo R. Oliveira, Feb 08 2025: (Start)
G.f.: x*(2*x^2 + 2*x + 1)/(1-x)^3.
E.g.f.: exp(x)*(5*x^2 - 2*x + 4)/2 - 2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)
Extensions
a(47) onwards from Andrew Howroyd, Feb 08 2025