cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134238 Row sums of triangle A134237.

Original entry on oeis.org

1, 5, 14, 28, 47, 71, 100, 134, 173, 217, 266, 320, 379, 443, 512, 586, 665, 749, 838, 932, 1031, 1135, 1244, 1358, 1477, 1601, 1730, 1864, 2003, 2147, 2296, 2450, 2609, 2773, 2942, 3116, 3295, 3479, 3668, 3862, 4061, 4265, 4474, 4688, 4907, 5131, 5360, 5594, 5833, 6077
Offset: 1

Views

Author

Gary W. Adamson, Oct 14 2007

Keywords

Crossrefs

Cf. A134237.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{1,5,14},50] (* or *) Rest[CoefficientList[Series[x*(2*x^2 + 2*x + 1)/(1-x)^3,{x,0,50}],x]] (* James C. McMahon, Apr 05 2025 *)
  • PARI
    a(n)=(5*n^2-7*n+4)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

Binomial transform of (1, 4, 5, 0, 0, 0, ...).
a(n) = a(n-1) + 5*n - 6 (with a(1)=1). - Vincenzo Librandi, Nov 23 2010
a(n) = (5*n^2 - 7*n + 4)/2. - Charles R Greathouse IV, Jun 17 2017
From Elmo R. Oliveira, Feb 08 2025: (Start)
G.f.: x*(2*x^2 + 2*x + 1)/(1-x)^3.
E.g.f.: exp(x)*(5*x^2 - 2*x + 4)/2 - 2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

Extensions

a(47) onwards from Andrew Howroyd, Feb 08 2025