cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134269 Number of solutions to the equation p^k - p^(k-1) = n, where k is a positive integer and p is prime.

Original entry on oeis.org

1, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Anthony C Robin, Jan 15 2008

Keywords

Comments

The Euler phi function A000010 (number of integers less than n which are coprime with n) involves calculating the expression p^(k-1)*(p-1), where p is prime. For example phi(120) = phi(2^3*3*5) = (2^3-2^2)*(3-1)*(5-1) = 4*2*4 = 32.

Examples

			Notice that it is not possible to have more than 2 solutions, but say when n=4 there are two solutions, namely 5^1 - 5^0 and 2^3 - 2^2.
a(2) = 2 refers to 2^2 - 2^1 = 2 and 3^1 - 3^0 = 2.
a(6) = 2 as 6 = 3^2 - 3^1 = 7^1 - 7^0.
		

Crossrefs

Programs

  • Maple
    A134269 := proc(n)
        local a,p,r ;
        a := 0 ;
        p :=2 ;
        while p <= n+1 do
            r := n/(p-1) ;
            if type(r,'integer') then
                if r = 1 then
                    a := a+1 ;
                else
                    r := ifactors(r)[2] ;
                    if nops(r) = 1 then
                        if op(1,op(1,r)) = p then
                            a := a+1 ;
                        end if;
                    end if;
                end if;
            end if;
            p := nextprime(p) ;
        end do:
        return a;
    end proc: # R. J. Mathar, Aug 06 2013
  • PARI
    lista(N=100) = {tab = vector(N); for (i=1, N, p = prime(i); for (j=1, N, v = p^j-p^(j-1); if (v <= #tab, tab[v]++););); for (i=1, #tab, print1(tab[i], ", "));} \\ Michel Marcus, Aug 06 2013
    
  • PARI
    A134269list(up_to) = { my(v=vector(up_to)); forprime(p=2,1+up_to, for(j=1,oo,my(d = (p^j)-(p^(j-1))); if(d>up_to,break,v[d]++))); (v); };
    v134269 = A134269list(up_to);
    A134269(n) = v134269[n]; \\ Antti Karttunen, Nov 09 2018

Extensions

a(2) corrected by Michel Marcus, Aug 06 2013
More terms from Antti Karttunen, Nov 09 2018