A134290 Ninth column (and diagonal) of Narayana triangle A001263.
1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, 1482270815025, 2791289197125, 5130235085625, 9219552907500
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
- W. F. Wheatley and James Ethridge (Proposers), Comment from Alan H. Rapoport, Problem 84, Missouri Journal of Mathematical Sciences, volume 8, #2, spring 1996, pages 97-102.
Crossrefs
Programs
-
GAP
List([0..25], n-> Binomial(n+9,9)*Binomial(n+8,7)/8); # G. C. Greubel, Aug 28 2019
-
Magma
[Binomial(n+9,9)*Binomial(n+8,7)/8: n in [0..25]]; // G. C. Greubel, Aug 28 2019
-
Maple
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8))^2*(n+9))/14631321600: seq(a(n), n=0..23); # Peter Luschny, Sep 01 2016
-
Mathematica
Table[Binomial[n+9,9]*Binomial[n+8,7]/8, {n,0,25}] (* G. C. Greubel, Aug 28 2019 *)
-
PARI
Vec((1+28*x+196*x^2+490*x^3+490*x^4+196*x^5+28*x^6+x^7)/(1-x)^17 + O(x^25)) \\ Altug Alkan, Sep 01 2016
-
PARI
vector(25, n, binomial(n+8,9)*binomial(n+7,7)/8) \\ G. C. Greubel, Aug 28 2019
-
Sage
[binomial(n+9,9)*binomial(n+8,7)/8 for n in (0..25)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = A001263(n+9,9) = binomial(n+9,9)*binomial(n+9,8)/(n+9).
O.g.f.: P(8,x)/(1-x)^17 with the numerator polynomial P(8,x) = Sum_{k=1..8} A001263(8,k)*x^(k-1), the eighth row polynomial of the Narayana triangle: P(8,x) = 1 + 28*x + 196*x^2 + 490*x^3 + 490*x^4 + 196*x^5 + 28*x^6 + x^7.
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 497925669/175 - 288288*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 580367/35 - 1680*Pi^2. (End)
Comments