cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134323 a(n) = Legendre(-3, prime(n)).

Original entry on oeis.org

-1, 0, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2007

Keywords

Comments

Value of lowest trit of prime(n) in balanced ternary representation (A059095) (original definition).
For p = prime(n) != 3, a(n) = +1 if p is of the form 3*k + 1, and -1 if the p is of the form 3*k - 1. - Joerg Arndt, Sep 16 2014

Examples

			For n=20, prime(20) = 71, and we verify that -3 is not a quadratic residue modulo 71, hence a(20) = -1. Also, we see that the balanced ternary representation row A059095(71) = {1, 0, -1, 0, -1} which ends in -1.
For n=21, prime(21) = 73, and we see that x^2 = -3 mod 73 has solutions like x = 17, 56, hence a(21) = 1. Also, the balanced ternary representation row A059095(73) = {1, 0 -1, 0, 1} which ends in 1.
		

Crossrefs

Cf. A000040, A039701, A049084, A112632 (partial sums), A059095 (balanced ternary)
Cf. A091177 (indices of -1's), A091178 (indices of +1's), A003627, A002476.
Other moduli: A070750, A257834.
Cf. A102283.

Programs

Formula

-1 if the n-th prime is 2 or == 5 mod 6, +1 if the n-th prime is == 1 mod 6, and 0 if it is 3.
a(n) = (1 - 0^A039701(n)) * (-1)^(A039701(n)+1).
a(n) != 0 for n != 2;
a(A049084(A003627(n))) = -1; a(A049084(A002476(n))) = +1.
a(n) = A102283(prime(n)). - Ridouane Oudra, Jan 09 2025

Extensions

Wording of definition changed by N. J. A. Sloane, Jun 21 2015
Name simplified by Alonso del Arte, Aug 02 2017