cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131176 a(n) = (n^5-n-10)/10.

Original entry on oeis.org

-1, -1, 2, 23, 101, 311, 776, 1679, 3275, 5903, 9998, 16103, 24881, 37127, 53780, 75935, 104855, 141983, 188954, 247607, 319997, 408407, 515360, 643631, 796259, 976559, 1188134, 1434887, 1721033, 2051111, 2429996, 2862911, 3355439, 3913535, 4543538, 5252183, 6046613, 6934391
Offset: 0

Views

Author

Artur Jasinski, Oct 20 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n^5 - n - 1) - 9)/10, {n, 0, 100}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{-1,-1,2,23,101,311},40] (* Harvey P. Dale, Dec 17 2024 *)

Formula

a(n) = ((n^5 - n - 1) - 9)/10.
G.f.: (-1+5*x-7*x^2+16*x^3-2*x^4+x^5)/(-1+x)^6. - R. J. Mathar, Nov 14 2007

A131211 a(n)=(n^5-n-30)/30.

Original entry on oeis.org

-1, -1, 0, 7, 33, 103, 258, 559, 1091, 1967, 3332, 5367, 8293, 12375, 17926, 25311, 34951, 47327, 62984, 82535, 106665, 136135, 171786, 214543, 265419, 325519, 396044, 478295, 573677, 683703, 809998, 954303, 1118479, 1304511, 1514512, 1750727, 2015537, 2311463, 2641170, 3007471, 3413331
Offset: 0

Views

Author

Artur Jasinski, Oct 20 2007, Nov 15 2007

Keywords

Comments

All numbers generated by the polynomial x^5-x-1 (see A126426) are congruent to 29 mod 30. The polynomial n^5-n-30 factors as (n-2)(n^4+2n^3+4n^2+8n+15)

Crossrefs

Programs

  • Mathematica
    Table[((n^5 - n - 1) - 29)/30, {n, -1, 100}]

Formula

a(n) = ((n^5 - n - 1) - 29)/30
G.f.: (-1+5*x-9*x^2+12*x^3-4*x^4+x^5)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
Showing 1-2 of 2 results.