cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134396 A007318 * A000125.

Original entry on oeis.org

1, 3, 9, 27, 80, 232, 656, 1808, 4864, 12800, 33024, 83712, 208896, 514048, 1249280, 3002368, 7143424, 16842752, 39387136, 91422720, 210763776, 482869248, 1099956224, 2492465152, 5620367360, 12616466432, 28202500096, 62797119488, 139318001664, 308029685760
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

a(n) is the number of ternary strings of length n that contain at most three 0's.- Enrique Navarrete, Mar 13 2024

Examples

			a(3) = 27 = (1, 3, 3, 1) dot (1, 2, 4, 8) = (1 + 6 + 12 + 8), where A000125 = (1, 2, 4, 8, 15, 26, 42, ...).
a(3) = 27 = sum of row 3 terms of triangle A134395: (8 + 12 + 6 + 1).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)(1-4x+5x^2)/(1-2x)^4,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-24,32,-16},{1,3,9,27},30] (* Harvey P. Dale, Mar 09 2023 *)
  • PARI
    Vec((1-x)*(1-4*x+5*x^2) / (1-2*x)^4 + O(x^30)) \\ Colin Barker, Feb 13 2017

Formula

Binomial transform of A000125. Row sums of triangle A134395.
O.g.f.: (1-x)*(1-4*x+5*x^2) / (1-2*x)^4. - R. J. Mathar, Jun 08 2008
From Colin Barker, Feb 13 2017: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3.
a(n) = (2^(n-4)*(48 + 20*n + 3*n^2 + n^3)) / 3. (End)
E.g.f.: e^(2*x)*(1+x+x^2/2+x^3/6). - Enrique Navarrete, Mar 13 2024

Extensions

More terms from R. J. Mathar, Jun 08 2008