cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134398 Triangle read by rows: T(n, k) = (k-1)*(n-k) + binomial(n-1,k-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 16, 16, 9, 1, 1, 11, 23, 29, 23, 11, 1, 1, 13, 31, 47, 47, 31, 13, 1, 1, 15, 40, 71, 86, 71, 40, 15, 1, 1, 17, 50, 102, 146, 146, 102, 50, 17, 1, 1, 19, 61, 141, 234, 277, 234, 141, 61, 19, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Row sums = A116725: (1, 2, 5, 12, 26, 52, ...).

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  5,  1;
  1,  7, 10,  7,  1;
  1,  9, 16, 16,  9,  1;
  1, 11, 23, 29, 23, 11,  1;
  1, 13, 31, 47, 47, 31, 13,  1;
  1, 15, 40, 71, 86, 71, 40, 15, 1;
...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> (k-1)*(n-k) + Binomial(n-1,k-1) ))); # G. C. Greubel, Nov 29 2019
  • Magma
    [(k-1)*(n-k) + Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 29 2019
    
  • Maple
    seq(seq( (k-1)*(n-k) + binomial(n-1,k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 29 2019
  • Mathematica
    p[x_, n_]:= p[x,n]= If[n==0, 1, (x+1)^n +Sum[(n-m)*m*x^m*(1 +x^(n-2*m)), {m, 1, n- 1}]/2]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 02 2008 *)
    Table[(k-1)*(n-k) + Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 29 2019 *)
  • PARI
    T(n,k) = (k-1)*(n-k) + binomial(n-1,k-1); \\ G. C. Greubel, Nov 29 2019
    
  • Sage
    [[(k-1)*(n-k) + binomial(n-1,k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 29 2019
    

Formula

T(n, k) = A077028(n,k) + A007318(n,k) - 1.
Let p(x, n) = (1+x)^n + (1/2) * Sum_{j=1..n-1} (n-j)*j*x^j*(1 + x^(n - 2*j)) with p(x, 0) = 1, then T(n, k) = Coefficients(p(x,n)). - Roger L. Bagula, Nov 02 2008
T(n, k) = (k-1)*(n-k) + binomial(n-1,k-1). - G. C. Greubel, Nov 29 2019

Extensions

Extended by Roger L. Bagula, Nov 02 2008
Edited by G. C. Greubel, Nov 29 2019