A134398 Triangle read by rows: T(n, k) = (k-1)*(n-k) + binomial(n-1,k-1).
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 16, 16, 9, 1, 1, 11, 23, 29, 23, 11, 1, 1, 13, 31, 47, 47, 31, 13, 1, 1, 15, 40, 71, 86, 71, 40, 15, 1, 1, 17, 50, 102, 146, 146, 102, 50, 17, 1, 1, 19, 61, 141, 234, 277, 234, 141, 61, 19, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 1, 3, 1; 1, 5, 5, 1; 1, 7, 10, 7, 1; 1, 9, 16, 16, 9, 1; 1, 11, 23, 29, 23, 11, 1; 1, 13, 31, 47, 47, 31, 13, 1; 1, 15, 40, 71, 86, 71, 40, 15, 1; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..10], n-> List([1..n], k-> (k-1)*(n-k) + Binomial(n-1,k-1) ))); # G. C. Greubel, Nov 29 2019
-
Magma
[(k-1)*(n-k) + Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 29 2019
-
Maple
seq(seq( (k-1)*(n-k) + binomial(n-1,k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 29 2019
-
Mathematica
p[x_, n_]:= p[x,n]= If[n==0, 1, (x+1)^n +Sum[(n-m)*m*x^m*(1 +x^(n-2*m)), {m, 1, n- 1}]/2]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 02 2008 *) Table[(k-1)*(n-k) + Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 29 2019 *)
-
PARI
T(n,k) = (k-1)*(n-k) + binomial(n-1,k-1); \\ G. C. Greubel, Nov 29 2019
-
Sage
[[(k-1)*(n-k) + binomial(n-1,k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 29 2019
Formula
Let p(x, n) = (1+x)^n + (1/2) * Sum_{j=1..n-1} (n-j)*j*x^j*(1 + x^(n - 2*j)) with p(x, 0) = 1, then T(n, k) = Coefficients(p(x,n)). - Roger L. Bagula, Nov 02 2008
T(n, k) = (k-1)*(n-k) + binomial(n-1,k-1). - G. C. Greubel, Nov 29 2019
Extensions
Extended by Roger L. Bagula, Nov 02 2008
Edited by G. C. Greubel, Nov 29 2019
Comments