A134401 Row sums of triangle A134400.
1, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0
Examples
a(3) = 24 = sum of row 3 terms of triangle A134400: (3 + 9 + 9 + 3). a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5) = (1 + 3 + 15 + 5).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
GAP
a:=Concatenation([1],List([1..30],n->n*2^n)); # Muniru A Asiru, Oct 28 2018
-
Maple
1,seq(n*2^n,n=1..30); # Muniru A Asiru, Oct 28 2018
-
Mathematica
F = Function[x, x*2^x];F[Range[1, 10]] (* Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008 *) {1}~Join~Table[n 2^n, {n, 28}] (* or *) Total /@ Join[{{1}}, Table[n Binomial[n, k], {n, 28}, {k, 0, n}]] (* Michael De Vlieger, Apr 07 2016 *)
-
PARI
x='x+O('x^99); Vec((1-2*x+4*x^2)/(1-2*x)^2) \\ Altug Alkan, Apr 07 2016
Formula
Binomial transform of repeats of (4n+1): [1, 1, 5, 5, 9, 9, 13, 13, ...].
a(n) = n*2^n, n > 1. - Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n > 2.
G.f.: (1 - 2*x + 4*x^2)/(1-2*x)^2. (End)
E.g.f.: 1-E(0) where E(k)=1 - (k+1)/(1 - 2*x/(2*x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = A097064(n+1) for n >= 1. - Georg Fischer, Oct 28 2018
E.g.f.: 1 + 2*exp(2*x)*x. - Stefano Spezia, Feb 12 2023
Extensions
More terms from Johannes W. Meijer, Aug 15 2010
Comments