cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134435 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k odd entries that are followed by a smaller entry (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 2, 2, 4, 12, 12, 12, 72, 36, 144, 432, 144, 144, 1728, 2592, 576, 2880, 17280, 17280, 2880, 2880, 57600, 172800, 115200, 14400, 86400, 864000, 1728000, 864000, 86400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0

Views

Author

Emeric Deutsch, Nov 22 2007

Keywords

Comments

Row n has ceiling(n/2) entries (for n>0). T(2n,0) = T(2n+1,0) = n!*(n+1)! = A010790(n).
T(n,k) is also the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd, odd) (0 <= k <= ceiling(n,2)-1). Example: T(3,1)=4 because we have 132, 213, 312 and 231. - Emeric Deutsch, Dec 14 2008

Examples

			T(3,1) = 4 because we have 132, 312, 231 and 321.
Triangle starts:
    1;
    1;
    2;
    2,   4;
   12,  12;
   12,  72,  36;
  144, 432, 144;
  ...
		

Crossrefs

Bisection of column k=0 gives A010790.
Row sums give A000142.
Cf. A134434.

Programs

  • Maple
    T:=proc(n, k) if `mod`(n, 2)=0 then binomial((1/2)*n-1, k)*binomial((1/2)* n+1, k+1)*factorial((1/2)*n)^2 elif `mod`(n, 2)=1 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)* n+1/2, k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k=0..max(0,ceil((1/2)*n)-1)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_,k_]:=If[EvenQ[n],((n/2)!)^2Binomial[n/2-1,k]Binomial[n/2+1,k+1], ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,11},{k,0,Floor[(n-1)/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)

Formula

T(2n,k) = (n!)^2*C(n-1,k) C(n+1,k+1); T(2n+1,k) = n!(n+1)! * C(n,k) * C(n+1,k).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Jul 12 2024