A134435 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k odd entries that are followed by a smaller entry (n >= 0, k >= 0).
1, 1, 2, 2, 4, 12, 12, 12, 72, 36, 144, 432, 144, 144, 1728, 2592, 576, 2880, 17280, 17280, 2880, 2880, 57600, 172800, 115200, 14400, 86400, 864000, 1728000, 864000, 86400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0
Examples
T(3,1) = 4 because we have 132, 312, 231 and 321. Triangle starts: 1; 1; 2; 2, 4; 12, 12; 12, 72, 36; 144, 432, 144; ...
Links
- S. Kitaev and J. Remmel, Classifying descents according to parity, Annals of Combinatorics, 11, 2007, 173-193.
Programs
-
Maple
T:=proc(n, k) if `mod`(n, 2)=0 then binomial((1/2)*n-1, k)*binomial((1/2)* n+1, k+1)*factorial((1/2)*n)^2 elif `mod`(n, 2)=1 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)* n+1/2, k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k=0..max(0,ceil((1/2)*n)-1)) end do; # yields sequence in triangular form
-
Mathematica
T[n_,k_]:=If[EvenQ[n],((n/2)!)^2Binomial[n/2-1,k]Binomial[n/2+1,k+1], ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,11},{k,0,Floor[(n-1)/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
Formula
T(2n,k) = (n!)^2*C(n-1,k) C(n+1,k+1); T(2n+1,k) = n!(n+1)! * C(n,k) * C(n+1,k).
Extensions
T(0,0)=1 prepended by Alois P. Heinz, Jul 12 2024
Comments