A134466 See A134457.
0, 1, 1, 2, 6, 6, 11, 22, 44, 92, 92, 157, 311, 622, 1239, 2478, 4956, 9912, 19832, 19832, 36217, 72058, 144061, 288122, 576123, 1152239, 2304478, 4608943
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A103354[n_] := Floor[ FullSimplify[ ProductLog[ 2^n*Log[2]]/Log[2]]]; Accumulate[ Table[ A103354[n], {n, 1, 54}]] (* Jean-François Alcover, Dec 13 2011, after M. F. Hasler *)
LambertW(y) = solve( X=1,log(y), X*exp(X)-y) A006697(n,b=2)=local(m=floor(n+1-LambertW(b^(n+1)*log(b))/log(b)));(b^(m+1)-1)/(b-1)+(n-m)*(n-m+1)/2 \\ M. F. Hasler, Dec 14 2007
The binary string 000110 of length 6 contains the 16 distinct substrings 0, 1, 00, 01, 11, 10, 000, 001, 011, 110, 0001, 0011, 0110, 00011, 00110, 000110 and a computer search shows that no other binary string of length 6 contains more than 16. Thus a(6)=16. G.f. = x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 16*x^6 + 21*x^7 + 27*x^8 + 34*x^9 + ...
A103354[n_] := Floor[ FullSimplify[ ProductLog[ 2^n*Log[2]]/Log[2]]]; Accumulate[ Table[ A103354[n], {n, 1, 29}]] - 1 (* Jean-François Alcover, Dec 13 2011, after M. F. Hasler *)
For n = 2 there are four possible binary strings: "aa", "ab", "ba", "bb", and their subword complexities are 2, 3, 3 and 2 respectively, and their sum = a(2) = 10.
Comments