cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134465 Row sums of triangle A134464.

Original entry on oeis.org

1, 6, 16, 32, 55, 86, 126, 176, 237, 310, 396, 496, 611, 742, 890, 1056, 1241, 1446, 1672, 1920, 2191, 2486, 2806, 3152, 3525, 3926, 4356, 4816, 5307, 5830, 6386, 6976, 7601, 8262, 8960, 9696, 10471, 11286, 12142, 13040, 13981, 14966
Offset: 1

Views

Author

Gary W. Adamson, Oct 26 2007

Keywords

Comments

a(n) is the number of compositions of n+9 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016

Examples

			a(4) = 32 = sum of row 4, triangle A134464: (4 + 6 + 9 + 13).
a(4) = 32 = (1, 3, 3, 1) dot (1, 5, 5, 1) = (1 + 15 + 15 + 1).
		

Crossrefs

Cf. A134464.

Programs

  • GAP
    a:=[1,6,16,32];; for n in [5..50] do a[n]:=4*a[n-1]-6*a[n-2]+ 4*a[n-3]-a[n-4]; od; a; # G. C. Greubel, May 08 2019
  • Magma
    I:=[1, 6, 16, 32]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
    
  • Mathematica
    CoefficientList[Series[(1+2*x-2*x^2)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jun 29 2012 *)
  • PARI
    Vec(x*(1+2*x-2*x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    ((1+2*x-2*x^2)/(1-x)^4).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
    

Formula

Binomial transform of [1, 5, 5, 1, 0, 0, 0, ...].
G.f.: x*(1+2*x-2*x^2) / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012