A134465 Row sums of triangle A134464.
1, 6, 16, 32, 55, 86, 126, 176, 237, 310, 396, 496, 611, 742, 890, 1056, 1241, 1446, 1672, 1920, 2191, 2486, 2806, 3152, 3525, 3926, 4356, 4816, 5307, 5830, 6386, 6976, 7601, 8262, 8960, 9696, 10471, 11286, 12142, 13040, 13981, 14966
Offset: 1
Examples
a(4) = 32 = sum of row 4, triangle A134464: (4 + 6 + 9 + 13). a(4) = 32 = (1, 3, 3, 1) dot (1, 5, 5, 1) = (1 + 15 + 15 + 1).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv:1605.06825 [math.CO], 2016.
- Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A134464.
Programs
-
GAP
a:=[1,6,16,32];; for n in [5..50] do a[n]:=4*a[n-1]-6*a[n-2]+ 4*a[n-3]-a[n-4]; od; a; # G. C. Greubel, May 08 2019
-
Magma
I:=[1, 6, 16, 32]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
-
Mathematica
CoefficientList[Series[(1+2*x-2*x^2)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jun 29 2012 *)
-
PARI
Vec(x*(1+2*x-2*x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
-
Sage
((1+2*x-2*x^2)/(1-x)^4).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
Formula
Binomial transform of [1, 5, 5, 1, 0, 0, 0, ...].
G.f.: x*(1+2*x-2*x^2) / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
Comments