A134468 Numbers n such that 2^n and 3^n have the same leading digit.
0, 17, 28, 34, 40, 51, 57, 68, 80, 84, 85, 91, 97, 103, 107, 108, 114, 120, 125, 130, 142, 143, 147, 154, 159, 170, 176, 182, 187, 193, 199, 204, 206, 210, 216, 227, 233, 244, 250, 256, 260, 261, 267, 273, 278, 283, 284, 296, 301, 307, 318, 319, 323, 324, 330
Offset: 1
Programs
-
Maple
A000030 := proc(n) op(-1, convert(n,base,10)) ; end: isA134468 := proc(n) if A000030(2^n) = A000030(3^n) then true ; else false; fi ; end: for n from 0 to 800 do if isA134468(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Jan 30 2008
-
Mathematica
Select[Range[0, 500], IntegerDigits[2^# ][[1]] == IntegerDigits[3^# ][[1]] &] (* Stefan Steinerberger, Jan 21 2008 *)
Extensions
More terms from Stefan Steinerberger, Jan 21 2008
More terms from R. J. Mathar, Jan 30 2008