cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134527 G.f. A(x) satisfies: A(x) = Sum_{n>=0} [x*A(x)]^(2^n-1).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 58, 149, 385, 1001, 2652, 7140, 19384, 52944, 145590, 402949, 1121117, 3133255, 8793372, 24774557, 70045871, 198672464, 565144064, 1611946284, 4609140916, 13209415116, 37937455636, 109171460104, 314736939884, 908930799572, 2629120466966
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2007

Keywords

Comments

Number of Dyck n-paths with all ascent lengths being 1 less than a power of 2. [David Scambler, May 07 2012]

Crossrefs

Cf. A075864.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y+1, true)+`if`(t, add(
           b(x-2^j+1, y-2^j+1, false), j=1..ilog2(y+1)), 0)))
        end:
    a:= n-> b(2*n, 0, true):
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 01 2019
  • Mathematica
    f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x - 1, y, 0] + f[x, y - If[d == 0, 1, 2*d], If[d == 0, 1, 2*d]]]];Table[f[n, n, 0], {n, 0, 28}] (* David Scambler, May 07 2012 *)
  • PARI
    a(n)=polcoeff(serreverse(x/sum(j=0,#binary(n),x^(2^j-1)+ x*O(x^n))),n)

Formula

G.f.: A(x) = Series_Reversion{x/[Sum_{n>=0} x^(2^n-1)]}.