cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134546 Triangle read by rows: T(n, k) = Sum_{j=0..n} floor(j / k).

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

From Bob Selcoe, Aug 08 2016: (Start)
Columns are partial sums of k-repeating increasing positive integers:
Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);
Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);
Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.
Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively.
T(n, k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5, 2) = 6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}. (End)
Conjecture: For T(n, k) n >= k^(3/2), there is at least one prime in the interval [T(n-1, k+1), T(n, k)]. - Bob Selcoe, Aug 21 2016
Theorem: For n >= 3*k, T(n, k) is composite. - Daniel Hoying, Jul 08 2020

Examples

			The triangle T(n, k) begins:
   n\k  1   2   3   4  5  6  7  8  9  10 ...
   1:   1
   2:   3   1
   3:   6   2   1
   4:  10   4   2   1
   5:  15   6   3   2  1
   6:  21   9   5   3  2  1
   7:  28  12   7   4  3  2  1
   8:  36  16   9   6  4  3  2  1
   9:  45  20  12   8  5  4  3  2  1
  10:  55  25  15  10  7  5  4  3  2   1
... Reformatted. - _Wolfdieter Lang_, Feb 04 2015
T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18 - 3 = 15. - _Bob Selcoe_, Aug 21 2016
		

Crossrefs

Cf. A078567 (row sums), A000217 (column 1).

Programs

  • Maple
    T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n,k)) end:
    seq(seq(T(n,k), k=1..n),n=1..16); # Peter Luschny, May 26 2020
  • Mathematica
    nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k));
    tabl(nn) = {m = matrix(nn, nn, n , k, t(n,k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jan 18 2015
    
  • PARI
    trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb;} \\ Michel Marcus, Jan 20 2015

Formula

Original definition: T = A004736 * A051731 as infinite lower triangular matrices.
In other words: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k).
T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015
T(n, k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016
T(n, k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n, k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n, k) = 0 for k > n. - Henri Gonin, May 12 2020
T(n, k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020
From Daniel Hoying, Jul 06 2020: (Start)
T(m + 2*n - 1, m + n) = n for n > 0, m >= 0.
T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3).
T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End)

Extensions

Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015
Corrected and extended by Michael De Vlieger, Aug 10 2016
Edited and new name from Peter Luschny, Apr 02 2025