A134582 a(n) = (2*n)^2 - 4.
0, 12, 32, 60, 96, 140, 192, 252, 320, 396, 480, 572, 672, 780, 896, 1020, 1152, 1292, 1440, 1596, 1760, 1932, 2112, 2300, 2496, 2700, 2912, 3132, 3360, 3596, 3840, 4092, 4352, 4620, 4896, 5180, 5472, 5772, 6080, 6396, 6720, 7052, 7392, 7740, 8096, 8460
Offset: 1
References
- M. Imran and S. Hayat, On computation of topological indices of Aztec diamonds, Sci. Int. (Lahore), 26 (4), 1407-1412, 2014.
Links
- R. E. Borcherds, E. Freitag, and R. Weissauer, A Siegel cusp form of degree 12 and weight 12, arXiv:math/9805132 [math.AG], 1998, row A_2 page 6.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Wikipedia, Friendship graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A005563.
Programs
-
Maple
seq((2*k)^2-4, k=1..46);
-
Mathematica
a[n_] := (2*n)^2 - 4; Array[a, 50] (* Amiram Eldar, Dec 10 2022 *)
-
PARI
a(n)=(2*n)^2-4 \\ Charles R Greathouse IV, Jun 16 2017
Formula
From R. J. Mathar, Jan 24 2008: (Start)
O.g.f.: 4 - 12/(-1+x)^2 - 8/(-1+x)^3.
a(n) = 4*A005563(n-1). (End)
a(n) = a(n-1) + 8*n - 4 (with a(1)=0). - Vincenzo Librandi, Nov 23 2010
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=2} 1/a(n) = 3/16.
Sum_{n>=2} (-1)^n/a(n) = 1/16. (End)
Comments