A134632 5*n^5 + 3*n^3 - 2*n^2. Coefficients and exponents are the prime numbers in decreasing order.
0, 6, 176, 1278, 5280, 15950, 39456, 84966, 165248, 297270, 502800, 809006, 1249056, 1862718, 2696960, 3806550, 5254656, 7113446, 9464688, 12400350, 16023200, 20447406, 25799136, 32217158, 39853440, 48873750, 59458256, 71802126, 86116128, 102627230, 121579200, 143233206, 167868416, 195782598, 227292720
Offset: 0
Examples
a(4)=5280 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120+192-32=5280.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[5*n^5+3*n^3-2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
Maple
A134632:=n->5*n^5 + 3*n^3 - 2*n^2; seq(A134632(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
-
Mathematica
CoefficientList[Series[2 x (3 + 70 x + 156 x^2 + 66 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
Formula
a(n) = 5*n^5 + 3*n^3 - 2*n^2.
G.f.: 2x*(3+70x+156x^2+66x^3+5x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
Extensions
More terms from Vincenzo Librandi, Dec 14 2010