A134647 Let a(1) = 0, a(2) = 1; and a(n) = a(n-1) + [the two-digit integer split by the comma which separates a(n-1) and a(n-2)].
0, 1, 2, 14, 35, 78, 135, 216, 268, 330, 413, 417, 451, 525, 540, 595, 600, 656, 662, 728, 755, 842, 900, 929, 938, 1037, 1118, 1189, 1270, 1361, 1362, 1373, 1394, 1425, 1466, 1517, 1578, 1649, 1730, 1821, 1822, 1833, 1854, 1885, 1926, 1977
Offset: 1
Examples
135 = 78 + 57, since the comma in 35,78 splits the number 57.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (First 1000 terms from _Harvey P. Dale_)
Programs
-
Maple
# to compute the first M terms, from N. J. A. Sloane, Nov 20 2023 Ldigit:=proc(n) local v; v:=convert(n, base, 10); v[-1]; end; M:=100; s:=[0,1]; i:=0; j:=1; for m from 2 to M do k := j + 10*(i mod 10) + Ldigit(j); s:=[op(s),k]; i:=j; j:=k; od: s;
-
Mathematica
a[1]=0;a[2]=1; a[n_]:=a[n]=a[n-1]+10 Mod[a[n-2],10]+IntegerDigits[a[n-1]][[1]]; Table[a[k],{k,100}] nxt[{a_,b_}]:={b,b+10IntegerDigits[a][[-1]]+First[IntegerDigits[b]]}; NestList[ nxt,{0,1},50][[All,1]] (* Harvey P. Dale, Jul 01 2020 *)
Extensions
Corrected and extended with Mma code by Farideh Firoozbakht, Oct 15 2009