A134737 Number of partitions of the n-th partition number into positive parts not greater than n.
1, 2, 3, 6, 13, 44, 131, 638, 3060, 22367, 167672, 2127747, 26391031, 537973241, 12274276512, 429819314124, 16928838590640, 1068323095351171, 75345432929798690, 8339062208354516217, 1083103359596125913021, 209256696715820656730807, 48414226122932084106352434
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..55
- Eric Weisstein's World of Mathematics, Partition
- Eric Weisstein's World of Mathematics, Partition Function P
- Index entries for sequences related to partitions
Programs
-
Maple
with(numtheory): P:= proc(n) local d, j; P(n):= `if`(n=0, 1, add(add(d, d=divisors(j)) *P(n-j), j=1..n)/n) end: b:= proc(n,i) if n<0 then 0 elif n=0 then 1 elif i=0 then 0 else b(n,i):= b(n, i-1) +b(n-i, i) fi end: a:= n-> b(P(n),n): seq(a(n), n=1..25); # Alois P. Heinz, Jul 17 2009
-
Mathematica
(* first do *) Needs["DiscreteMath`IntegerPartitions`"] (* then *) a[n_] := Length@ IntegerPartitions[ PartitionsP[n], n] (* Robert G. Wilson v, Nov 11 2007 *) P[n_] := P[n] = Module[{d, j}, If[n == 0, 1, Sum[DivisorSum[j, #&]*P[n - j], {j, 1, n}]/n]]; b [n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i == 0, 0, True, b[n, i] = b[n, i-1] + b[n-i, i]]; a[n_] := b[P[n], n]; Table [a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jul 17 2009