cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134737 Number of partitions of the n-th partition number into positive parts not greater than n.

Original entry on oeis.org

1, 2, 3, 6, 13, 44, 131, 638, 3060, 22367, 167672, 2127747, 26391031, 537973241, 12274276512, 429819314124, 16928838590640, 1068323095351171, 75345432929798690, 8339062208354516217, 1083103359596125913021, 209256696715820656730807, 48414226122932084106352434
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 07 2007

Keywords

Programs

  • Maple
    with(numtheory): P:= proc(n) local d, j; P(n):= `if`(n=0, 1, add(add(d, d=divisors(j)) *P(n-j), j=1..n)/n) end: b:= proc(n,i) if n<0 then 0 elif n=0 then 1 elif i=0 then 0 else b(n,i):= b(n, i-1) +b(n-i, i) fi end: a:= n-> b(P(n),n): seq(a(n), n=1..25); # Alois P. Heinz, Jul 17 2009
  • Mathematica
    (* first do *) Needs["DiscreteMath`IntegerPartitions`"] (* then *) a[n_] := Length@ IntegerPartitions[ PartitionsP[n], n] (* Robert G. Wilson v, Nov 11 2007 *)
    P[n_] := P[n] = Module[{d, j}, If[n == 0, 1, Sum[DivisorSum[j, #&]*P[n - j], {j, 1, n}]/n]]; b [n_, i_] := b[n, i] = Which[n<0, 0, n == 0, 1, i == 0, 0, True, b[n, i] = b[n, i-1] + b[n-i, i]]; a[n_] := b[P[n], n]; Table [a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(n) = A026820(A026820(n,n),n) = A026820(A000041(n),n).

Extensions

More terms from Alois P. Heinz, Jul 17 2009