A134739 Cubes of (positive numbers that are not the sum of three nonzero squares), that is, the terms of A004214, cubed.
1, 8, 64, 125, 343, 512, 1000, 2197, 3375, 4096, 8000, 12167, 15625, 21952, 29791, 32768, 50653, 59319, 64000, 103823, 140608, 166375, 195112, 216000, 250047, 262144, 357911, 493039, 512000, 614125, 658503, 778688, 857375, 1000000
Offset: 1
Keywords
Examples
8 is in the sequence because it is not possible to express 2 as a sum of three nonzero squares and 2^3 = 8. 27 is not in the sequence because 3 = 1^2 + 1^2 + 1^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # to get all terms <= N^3 A004214:= {$1..N} minus {seq(seq(seq(a^2 + b^2 + c^2, c = b .. floor(sqrt(N-a^2-b^2))), b = a .. floor(sqrt(N-a^2))),a=1..floor(sqrt(N/2)))}: map(`^`,sort(convert(A004214,list)), 3); # Robert Israel, Jan 12 2016
-
Mathematica
searchMax = 16; Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, searchMax}]^3, x]], searchMax^2], 0]]^3 (* Based on Ray Chandler's program for A004214, Alonso del Arte, Jan 12 2016 *)
-
PARI
is(n) = { my(a, b) ; a=1; while(a^2+1
Altug Alkan, Jan 13 2016
Formula
a(n) = A004214(n)^3. - Ray Chandler, Jan 29 2009
Extensions
Definition corrected by Robert Israel, Jan 12 2016
Comments