cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134742 Numbers whose square is a permutational number A134640.

Original entry on oeis.org

0, 1, 15, 50, 85, 195, 327, 561, 789, 867, 1323, 1764, 2450, 2751, 2858, 2878, 3213, 3418, 3538, 4834, 4846, 5062, 5342, 5770, 6286, 7814, 8574, 8634, 9722, 10254, 10610, 10614, 11522, 11702, 11826, 12363, 12543, 13490, 14246, 14502, 14538, 14676, 14818, 14902, 15186, 15434, 15681, 15874, 15963
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    extend:= proc(x,N,S,b,k)
      local i,R;
      R:= NULL;
      for i in S while x + i*b^k <= N^2 do
        if k = 0 then
           if issqr(x+i*b^k) then R:= R, sqrt(x+i*b^k) fi
        else
           R:= R, procname(x+i*b^k,N,subs(i=NULL,S),b,k-1)
        fi
      od;
      R
    end proc:
    f:= (b,N) -> extend(0,N,[$0..(b-1)],b,b-1):
    R:= 0:
    for b from 2 while b^(b-2) < N^2 do
      R:= R, f(b,N);
    od:
    sort([R]); # Robert Israel, Sep 04 2020
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; Sqrt[a]

Formula

a(n) = sqrt(A134741(n)).

Extensions

Corrected and more terms from Robert Israel, Sep 04 2020