cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134741 Permutational numbers A134640 which are squares.

Original entry on oeis.org

0, 1, 225, 2500, 7225, 38025, 106929, 314721, 622521, 751689, 1750329, 3111696, 6002500, 7568001, 8168164, 8282884, 10323369, 11682724, 12517444, 23367556, 23483716, 25623844, 28536964, 33292900, 39513796, 61058596, 73513476, 74545956, 94517284, 105144516, 112572100, 112656996, 132756484
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^10: # for terms <= N
    extend:= proc(x, N, S, b, k)
      local i, R;
      R:= NULL;
      for i in S while x + i*b^k <= N do
        if k = 0 then
           if issqr(x+i*b^k) then R:= R, x+i*b^k fi
        else
           R:= R, procname(x+i*b^k, N, subs(i=NULL, S), b, k-1)
        fi
      od;
      R
    end proc:
    f:= (b, N) -> extend(0, N, [$0..(b-1)], b, b-1):
    R:= 0:
    for b from 2 while b^(b-2) < N do
      R:= R, f(b, N);
    od:
    sort([R]); # Robert Israel, Sep 04 2020
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; a

Formula

a(n) = A134742(n)^2.

Extensions

Corrected and more terms from Robert Israel, Sep 04 2020

A134745 Numbers which are not permutational numbers A134640.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; c = Table[n, {n, 0, 44790}]; k = Complement[c, a] (*Artur Jasinski*)
Showing 1-2 of 2 results.