A134742 Numbers whose square is a permutational number A134640.
0, 1, 15, 50, 85, 195, 327, 561, 789, 867, 1323, 1764, 2450, 2751, 2858, 2878, 3213, 3418, 3538, 4834, 4846, 5062, 5342, 5770, 6286, 7814, 8574, 8634, 9722, 10254, 10610, 10614, 11522, 11702, 11826, 12363, 12543, 13490, 14246, 14502, 14538, 14676, 14818, 14902, 15186, 15434, 15681, 15874, 15963
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..261
Programs
-
Maple
N:= 10^5: # for terms <= N extend:= proc(x,N,S,b,k) local i,R; R:= NULL; for i in S while x + i*b^k <= N^2 do if k = 0 then if issqr(x+i*b^k) then R:= R, sqrt(x+i*b^k) fi else R:= R, procname(x+i*b^k,N,subs(i=NULL,S),b,k-1) fi od; R end proc: f:= (b,N) -> extend(0,N,[$0..(b-1)],b,b-1): R:= 0: for b from 2 while b^(b-2) < N^2 do R:= R, f(b,N); od: sort([R]); # Robert Israel, Sep 04 2020
-
Mathematica
a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; Sqrt[a]
Formula
a(n) = sqrt(A134741(n)).
Extensions
Corrected and more terms from Robert Israel, Sep 04 2020
Comments