cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134742 Numbers whose square is a permutational number A134640.

Original entry on oeis.org

0, 1, 15, 50, 85, 195, 327, 561, 789, 867, 1323, 1764, 2450, 2751, 2858, 2878, 3213, 3418, 3538, 4834, 4846, 5062, 5342, 5770, 6286, 7814, 8574, 8634, 9722, 10254, 10610, 10614, 11522, 11702, 11826, 12363, 12543, 13490, 14246, 14502, 14538, 14676, 14818, 14902, 15186, 15434, 15681, 15874, 15963
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    extend:= proc(x,N,S,b,k)
      local i,R;
      R:= NULL;
      for i in S while x + i*b^k <= N^2 do
        if k = 0 then
           if issqr(x+i*b^k) then R:= R, sqrt(x+i*b^k) fi
        else
           R:= R, procname(x+i*b^k,N,subs(i=NULL,S),b,k-1)
        fi
      od;
      R
    end proc:
    f:= (b,N) -> extend(0,N,[$0..(b-1)],b,b-1):
    R:= 0:
    for b from 2 while b^(b-2) < N^2 do
      R:= R, f(b,N);
    od:
    sort([R]); # Robert Israel, Sep 04 2020
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; Sqrt[a]

Formula

a(n) = sqrt(A134741(n)).

Extensions

Corrected and more terms from Robert Israel, Sep 04 2020

A339693 All pandigital squares which contain each digit exactly once in some base b >= 2. The numbers are written in base 10.

Original entry on oeis.org

225, 38025, 314721, 622521, 751689, 3111696, 6002500, 7568001, 10323369, 61058596, 73513476, 74545956, 94517284, 105144516, 112572100, 112656996, 132756484, 136936804, 181980100, 202948516, 210308004, 211353444, 219573124, 222069604, 230614596, 238208356, 251983876
Offset: 1

Views

Author

David Schilling, Dec 13 2020

Keywords

Comments

The sequence consists of all square numbers which when represented in some base b contain all the b digits in that base exactly once.
A225218 has all the squares in base 10 that are pandigital. This sequence is the union of all such sequences in any integer base b >= 2.

Examples

			15^2 in base 4 (225 is 3201 in base 4) contains the digits 0-3.
195^2 in base 6 (38025 is 452013 in base 6) contains the digits 0-5.
The next three terms contain all the digits in base 7.
The following four entries are pandigital in base 8, the next 26 in base 9, and so on.
		

Crossrefs

Programs

  • JAI
    #import "Basic";
    dstr := "0123456789abcdef";
    main :: () {
        digits : [16] int;
        for j:2..3_000_000 {
            for b:3..16 {
                for d : 0..15
                    digits[d] = 0;
                k := j*j;
                s := tprint( "%",  formatInt( k, b ) );
                if s.count > b
                    continue;
                for d : 0..s.count-1 {
                    for c : 0..dstr.count-1 {
                        if s[d] == dstr[c] {
                            digits[c] += 1;
                            continue d;
                        }
                    }
                }
                for d : 0..b-1 {
                    if digits[d] != 1
                        continue b;
                }
                print( "%, ", k );
            }
        }
    }
    
  • PARI
    \\ here ispandig(n) returns base if n is pandigital, otherwise 0.
    ispandig(n)={for(b=2, oo, my(r=logint(n,b)+1); if(rAndrew Howroyd, Dec 20 2020

A134745 Numbers which are not permutational numbers A134640.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; c = Table[n, {n, 0, 44790}]; k = Complement[c, a] (*Artur Jasinski*)
Showing 1-3 of 3 results.