cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134757 A007318 * A100071.

Original entry on oeis.org

1, 3, 11, 37, 123, 401, 1293, 4131, 13107, 41353, 129873, 406319, 1267093, 3940431, 12224579, 37845117, 116944371, 360771417, 1111332129, 3418840431, 10504903809, 32242682787, 98863833159, 302863592073, 927025884477, 2835306153351, 8665554849903
Offset: 1

Views

Author

Gary W. Adamson, Nov 08 2007

Keywords

Comments

Also A007318^(-1) * A037965. - Gary W. Adamson, Nov 10 2007

Examples

			a(3) = 11 = (1, 2, 1) dot (1, 2, 6) = (1 + 4 + 6), where A100071 = (1, 2, 6, 12, 30, ...).
a(3) = 11 = (1, -2, 1) dot (1, 4, 18) = (1 - 8 + 18). - _Gary W. Adamson_, Nov 10 2007
		

Crossrefs

Programs

  • Magma
    A134757:= func< n | (&+[(-1)^(n-k-1)*(k+1)^2*Binomial(n-1,k)*Catalan(k) : k in [0..n-1]]) >;
    [A134757(n): n in [1..40]]; // G. C. Greubel, May 28 2024
    
  • Mathematica
    a[n_]:= a[n]= Sum[(-1)^(n-k-1)*Binomial[n-1,k]*(k+1)*Binomial[2*k, k], {k,0,n-1}];
    Table[a[n], {n,40}] (* G. C. Greubel, May 28 2024 *)
  • SageMath
    def A134757(n): return sum((-1)^(n-k-1)*(k+1)*binomial(n-1,k)*binomial( 2*k, k) for k in range(n))
    [A134757(n) for n in range(1,41)] # G. C. Greubel, May 28 2024

Formula

Binomial transform of A100071 starting [1, 2, 6, 12, 30, ...].
Inverse binomial transform of A037965 starting [1, 4, 18, 80, 350, ...].
a(n) = (n-1)! * [x^(n-1)] exp(x)*((1 + 2*x)*BesselI(0, 2*x) + 2*x*BesselI(1, 2*x)) for n>0, a(0) = 0. - Peter Luschny, Aug 26 2012
D-finite with recurrence (n-1)*a(n) = 3*(n-1)*a(n-1) +(n+1)*a(n-2) -3*(n-3)*a(n-3). - R. J. Mathar, Nov 09 2021
G.f.: x*(1-x)/((1-3*x)*sqrt((1+x)*(1-3*x))). - G. C. Greubel, May 28 2024