cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100071 a(n) = n * binomial(n-1, floor((n-1)/2)) = n * max_{i=0..n} binomial(n-1, i).

Original entry on oeis.org

0, 1, 2, 6, 12, 30, 60, 140, 280, 630, 1260, 2772, 5544, 12012, 24024, 51480, 102960, 218790, 437580, 923780, 1847560, 3879876, 7759752, 16224936, 32449872, 67603900, 135207800, 280816200, 561632400, 1163381400, 2326762800
Offset: 0

Views

Author

Paul Barry, Nov 02 2004

Keywords

Comments

Old name: An inverse Chebyshev transform of n.
Hankel transform is (-1)^n*n*2^(n-1), A085750. This is the inverse binomial transform of -n. - Paul Barry, Jan 11 2007
Corollary 3 of the Farhi reference mentions this sequence. - Roger L. Bagula, Nov 08 2009
Number of UDUD's in all length n+3 left factors of Dyck paths (here U=(1,1) and D=(1,-1)). Example: a(2)=2 because in (UDUD)U, UDUUD, UDUUU, UUDDU, U(UDUD), UUDUU, UUUDD, UUUDU, UUUUD, and UUUUU we have a total of two UDUDs (shown between parentheses). Also number of UUDD's in all length n+3 left factors of Dyck paths (here U=(1,1) and D=(1,-1)). Example: a(2)=2 because in UDUDU, UDUUD, UDUUU, (UUDD)U, UUDUD, UUDUU, U(UUDD), UUUDU, UUUUD, and UUUUU we have a total of two UUDDs (shown between parentheses). - Emeric Deutsch, Jun 19 2011
Apparently the number of long ascents in all symmetric Dyck (n+1)-paths. - David Scambler, Aug 17 2012
Beginning with the least positive term multiple of an odd prime p (which is a(p)), we have exactly p+1 consecutive terms multiple of p. - Vladimir Shevelev, Aug 17 2012
Apparently also the count of 'unmatched symbols' in the binary strings of length n (see A008314). - Wouter Meeussen, May 26 2013

Crossrefs

Programs

  • Magma
    [n*Binomial(n-1, Floor((n-1)/2)): n in [0..35]]; // Vincenzo Librandi, Sep 14 2015
    
  • Maple
    swing := n -> n!/iquo(n,2)!^2:
    A100071 := n -> swing(n)*(n/2)^(n-1 mod 2):
    seq(A100071(i),i=0..30); # Peter Luschny, Aug 31 2011
  • Mathematica
    Table[(Floor[n/2] + Ceiling[n/2] + 1)!/(Floor[n/2]!*Ceiling[n/2]!), {n, 1, 40}] (* Stefan Steinerberger, Nov 04 2008 *)
    Table[If[n == 0, 0, n*Binomial[n - 1, Floor[(n - 1)/2]]], {n, 0, 30}] (* Roger L. Bagula, Nov 08 2009 *);
    Table[ Tr[ Table[Count[match[-1 + 2*IntegerDigits[n, 2, k]], 0], {n, 2^(k - 1), 2^k - 1}]], {k, 16}] (* function 'match' see A008314; Wouter Meeussen, May 26 2013 *)
  • PARI
    a(n) = n * binomial(n-1, (n-1)\2); \\ Michel Marcus, Sep 14 2015
  • Sage
    def A100071(n):
        f = factorial(n)/factorial(n//2)^2
        return f if is_odd(n) else f*(n/2)
    [A100071(n) for n in (0..50)]  # Peter Luschny, Aug 17 2012
    

Formula

G.f.: 2*x*(1 - sqrt(1 - 4*x^2))/(sqrt(1 - 4*x^2)*(sqrt(1 - 4*x^2) + 2*x - 1)^2).
G.f.: (1/sqrt(1 - 4*x^2))*x*c(x^2)/(1 - x*c(x^2))^2.
a(n) = Sum_{k = 0..floor(n/2)} binomial(n,k)*(n - 2*k).
Sum_{k = 0..floor(n/2)} binomial(n-k,k)*(-1)^k*a(n-2k) = 1.
From Paul Barry, Jan 11 2007: (Start)
a(n) = n*binomial(n-1, floor((n-1)/2));
a(n) = Sum_{k = 0..n} binomial(n,k)*2^(n-k)*binomial(2*k-2, k-1)*(-1)^(k-1). (End)
Starting (1, 2, 6, 12, ...), = inverse binomial transform of A134757: (1, 3, 11, 37, 123, 401, ...). - Gary W. Adamson, Nov 08 2007
a(n) = a(n-1)*n/floor(n/2) for n > 0. - Reinhard Zumkeller, Jan 20 2008
G.f.: x/((1 - 2*x)*sqrt(1 - 4*x^2)). - Paul Barry, Apr 25 2008
a(n) = (floor(n/2) + ceiling(n/2) + 1)!/(floor(n/2)! * ceiling(n/2)!). - Stefan Steinerberger, Nov 04 2008
a(n) = A056040(n)*(n/2)^((n-1) mod 2). - Peter Luschny, Aug 31 2011
Asymptotic: a(n) ~ b(n) where b(n) = ceiling(2^(n-1)*sqrt(2*n-(-1)^n)/sqrt(Pi)). b(n) is also a lower bound of a(n) and an upper bound of 2^(n-1). With corollary 3 from Bakir Farhi (see reference) lcm(1,2,...,n) >= a(n) >= b(n) >= 2^(n-1). - Peter Luschny, Aug 17 2012
a(n) = n for n < 3, a(n) = 4*a(n-2) + 2*a(n-1)/(n-1) for n >= 3. - Alexander R. Povolotsky, Aug 17 2012
E.g.f.: x*(BesselI(0,2*x) + BesselI(1,2*x)). - Peter Luschny, Aug 19 2012
a(n) = (-1)^(n*(n+1)/2) * Sum_{k = 0..n} (-1)^k*k*binomial(n,k)^2. - Peter Bala, Jul 25 2016
a(n) = n!/(floor((n-1)/2)!*ceiling((n-1)/2)!). See the Bandiera link. - Michel Marcus, Feb 28 2017
D-finite with recurrence (-n+1)*a(n) + 2*a(n-1) + 4*(n-1)*a(n-2) = 0. - R. J. Mathar, Aug 09 2017
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)). (End)

Extensions

Name changed, using part of a comment from Paul Barry, by Peter Luschny, Aug 17 2012

A037965 a(n) = n*binomial(2*n-2, n-1).

Original entry on oeis.org

0, 1, 4, 18, 80, 350, 1512, 6468, 27456, 115830, 486200, 2032316, 8465184, 35154028, 145608400, 601749000, 2481880320, 10218366630, 42004911960, 172427570700, 706905276000, 2894777105220, 11841673237680, 48394276165560, 197602337462400, 806190092077500
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the convolution of A000984 and A081294. - Paul Barry, Sep 18 2008

References

  • The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972.

Crossrefs

Cf. A000984, A001622, A081294, A109188 (inverse binomial transform).

Programs

  • Magma
    [0] cat [n^2*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Jun 19 2022
    
  • Mathematica
    a[n_]:= n*Binomial[2*n-2, n-1]; Array[a, 30, 0] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    a(n) = n*binomial(2*n-2, n-1); \\ Joerg Arndt, Sep 04 2017
    
  • SageMath
    [n^2*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 19 2022

Formula

Assuming offset -1 here and offset 0 in A134757, A134757 is the inverse binomial transform of this sequence. - Gary W. Adamson, Nov 08 2007
G.f.: Hypergeometric2F1([1/2, 2], [1], 4*x). - Paul Barry, Sep 03 2008
From Paul Barry, Sep 18 2008: (Start)
G.f.: x*(1-2*x)/(1-4*x)^(3/2);
a(n+1) = Sum_{k=0..n} binomial(2*k,k)*(4^(n-k) + 0^(n-k))/2. (End)
D-finite with recurrence (n-1)*a(n) - 2*(3*n-4)*a(n-1) + 4*(2*n-5)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
E.g.f.: x*exp(2*x)*BesselI(0,2*x). - Ilya Gutkovskiy, Aug 22 2018
a(n) = n*A000984(n-1). - R. J. Mathar, Nov 08 2021
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/(3*sqrt(3)) - Pi^2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)/sqrt(5) - 4*log(phi)^2, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Zerinvary Lajos, Oct 02 2007
Showing 1-2 of 2 results.