cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134760 a(n) = 2*A000984(n) - 1.

Original entry on oeis.org

1, 3, 11, 39, 139, 503, 1847, 6863, 25739, 97239, 369511, 1410863, 5408311, 20801199, 80233199, 310235039, 1202160779, 4667212439, 18150270599, 70690527599, 275693057639, 1076515748879, 4208197927439, 16466861455199, 64495207366199, 252821212875503
Offset: 0

Views

Author

Gary W. Adamson, Nov 09 2007

Keywords

Comments

Inverse binomial transform of this is A134761: (the sequence interpolated with ones): (1, 1, 3, 1, 11, 1, 39, 1, 139, ...).

Crossrefs

Programs

  • Magma
    [2*(n+1)*Catalan(n)-1: n in [0..40]]; // G. C. Greubel, Apr 06 2024
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 2*n+1,
           ((12-31*n+15*n^2) *a(n-1)
            -2*(3*n-2)*(2*n-3)*a(n-2)) / (n*(3*n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    a[n_] := 2 Binomial[2n, n] - 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 21 2017 *)
  • SageMath
    [2*binomial(2*n,n)-1 for n in range(41)] # G. C. Greubel, Apr 06 2024

Formula

From R. J. Mathar, Mar 23 2015: (Start)
n*a(n) = 2*(3*n-2)*a(n-1) - (9*n-14)*a(n-2) + 2*(2*n-5)*a(n-3).
n*(3*n-5)*a(n) = (15*n^2-31*n+12)*a(n-1) - 2*(3*n-2)*(2*n-3)*a(n-2). (End)
From G. C. Greubel, Apr 06 2024: (Start)
a(n) = 2*(n+1)*A000108(n) - 1.
G.f.: 2/sqrt(1 - 4*x) - 1/(1 - x).
E.g.f.: 2*exp(2*x)*BesselI(0, 2*x) - exp(x). (End)