A134775 Numbers k such that the sum of first k Catalan numbers is a prime.
2, 9, 11, 31, 46, 146, 795, 2773, 2788, 9797, 38289, 39192, 40857, 41203, 47380
Offset: 1
Examples
a(1) = 2 because C(1) + C(2) = 1 + 2 = 3 is a prime. a(2) = 9 because C(1) + C(2) + C(3) + C(4) + C(5) + C(6) + C(7) + C(8) + C(9) = 1 + 2 + 5 + 14 + 42 + 132 + 429 + 1430 + 4862 = 6917 is a prime.
Links
- Eric Weisstein's World of Mathematics, Catalan Number
Crossrefs
Programs
-
Maple
for n to 3000 do c[n]:= binomial(2*n,n)/(n+1) end do: a:=proc(n) if isprime(add(c[j],j=1..n))=true then n else end if end proc: seq(a(n),n=1..3000); # Emeric Deutsch, Nov 19 2007
-
Mathematica
f=0; Do[ f = f + Binomial[ 2n, n ]/(n+1); If[ PrimeQ[f], Print[ {n, f} ] ], {n, 1, 1000} ] Flatten[Position[Accumulate[CatalanNumber[Range[1000]]],?PrimeQ]] (* _Harvey P. Dale, Jan 28 2013 *)
Formula
a(n) = A126807(n) + 1. - Michael S. Branicky, Jun 24 2025
Extensions
a(8)-a(9) from Emeric Deutsch, Nov 19 2007
a(10) from Ryan Propper, Jan 06 2008
a(11)-a(15) from Michael S. Branicky, Jun 25 2025
Comments