cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A134791 a(n) = floor(log(Fibonacci(prime(k))/prime(k))), where k = A119984(n).

Original entry on oeis.org

-1, 0, 0, 2, 2, 4, 7, 9, 16, 17, 34, 57, 60, 166, 200, 201, 209, 237, 266, 267, 1420, 2263, 2582, 4470, 4646, 6933, 12289, 14789, 17311, 18039, 24449, 39369, 50472, 62555, 71250, 96762, 191209, 208726, 283920, 285676, 290979, 448242, 505208, 618634, 787250, 867638
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Floor[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k

Extensions

a(21)-a(46) from Amiram Eldar, Oct 13 2024

A134792 a(n) = round(log(Fibonacci(prime(k))/prime(k))), where k = A119984(n).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 10, 16, 18, 35, 57, 60, 166, 201, 201, 209, 238, 267, 268, 1421, 2263, 2583, 4471, 4647, 6934, 12289, 14789, 17312, 18039, 24450, 39370, 50472, 62555, 71250, 96762, 191210, 208727, 283921, 285676, 290980, 448242, 505208, 618634, 787251, 867638
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[PrimeQ[Fibonacci[Prime[n]]], AppendTo[k, Round[Log[Fibonacci[Prime[n]]/Prime[n]]]]], {n, 1, 200}]; k

Extensions

a(21)-a(46) from Amiram Eldar, Oct 13 2024

A135724 Fibonacci numbers whose indices are prime Fibonacci numbers: a(n) = Fibonacci(A001605(n)).

Original entry on oeis.org

1, 2, 5, 233, 1779979416004714189, 2211236406303914545699412969744873993387956988653
Offset: 1

Views

Author

Artur Jasinski, Nov 26 2007

Keywords

Comments

The only known prime numbers in this sequence are 2, 5 and 233.
The next term (a(6)) has 334 digits. - Harvey P. Dale, Apr 28 2023

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[If[PrimeQ[c = Fibonacci[n]], w = Fibonacci[Fibonacci[n]]; AppendTo[a, w]; AppendTo[b, n]], {n, 1, 31}]; a
    Fibonacci[#]&/@Select[Fibonacci[Range[20]],PrimeQ] (* Harvey P. Dale, Apr 28 2023 *)

Extensions

Corrected by Harvey P. Dale, Apr 28 2023
Showing 1-3 of 3 results.