cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134804 Remainder of triangular number A000217(n) modulo 9.

Original entry on oeis.org

0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Jan 28 2008

Keywords

Comments

Periodic with period 9 since A000217(n+9) = A000217(n)+9(n+5) .
From Jacobsthal numbers A001045, A156060 = 0,1,1,3,5,2,3,7,4,0,8, = b(n). a(n)=A156060(n)*A156060(n+1) mod 9. Same transform (a(n)*a(n+1) mod 9 or b(n)*b(n+1) mod 9) in A157742, A158012, A158068, A158090. - Paul Curtz, Mar 25 2009

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 3, 6, 1, 6, 3, 1, 0},105] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = A010878(A000217(n)) = A010878(A055263(n)) = a(n-9).
O.g.f.: (-2x+2)/[3(x^2+x+1)]+(-3+3x^5)/(x^6+x^3+1)-7/[3(x-1)].