A134844 Numbers k such that k contains no zero but k^2 contains at least one zero.
32, 33, 45, 47, 48, 49, 51, 52, 53, 55, 64, 71, 78, 84, 95, 97, 98, 99, 138, 142, 143, 144, 145, 147, 148, 149, 151, 152, 153, 155, 174, 175, 176, 179, 195, 197, 198, 199, 217, 224, 225, 226, 241, 243, 245, 246, 247, 248, 249, 251, 252, 253, 255, 257, 259, 265
Offset: 1
Examples
a(1)=32 because 1024 = 32^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. Browkin, Groebner basis.
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); if member(0,L) then return false fi; L:= convert(n^2,base,10); member(0,L) end proc: select(filter, [$1..1000]); # Robert Israel, Jun 25 2019
-
Mathematica
a = {}; Do[Do[Do[k = 100s + 10n + m; w = IntegerDigits[k^2]; If[MemberQ[w, 0], AppendTo[a, k]], {n, 1, 9}], {m, 1, 9}], {s, 0, 9}]; Union[a] Select[Range[300],DigitCount[#,10,0]==0&&DigitCount[#^2,10,0]>0&] (* Harvey P. Dale, Mar 20 2012 *)
Extensions
Definition clarified by Harvey P. Dale, Mar 20 2012
Comments