A134860 Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.
4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - _N. J. A. Sloane_, May 06 2011
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, Vol. 11 (2008), Article 08.3.3.
Crossrefs
Cf. A000201, A001622, A001950, A003622, A003623, A035336, A101864, A134859, A035337, A134861, A134862, A134863, A035338, A134864, A035513.
Programs
-
Mathematica
With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &,Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
-
Python
from sympy import fibonacci def a(n): x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return x def ok(n): return str(a(n))[-3:]=="101" print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
-
Python
from math import isqrt def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022
Formula
Extensions
This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017
Comments