A095099 Duplicate of A134860.
4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a003622 n = a003622_list !! (n-1) a003622_list = filter ((elem 1) . a035516_row) [1..] -- Reinhard Zumkeller, Mar 10 2013
A003622 := proc(n) n+floor(n*(1+sqrt(5))/2)-1 ; end proc: # R. J. Mathar, Jan 25 2015 # Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016 # The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp. # Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files read out1; read out2; b[0]:=b1: b[1]:=b2: w2:=(i,j,n)->b[i][b[j][n]]; w3:=(i,j,k,n)->b[i][b[j][b[k][n]]]; for i from 0 to 1 do lprint("name=",i); lprint([seq(b[i][n],n=1..100)]): od: for i from 0 to 1 do for j from 0 to 1 do lprint("name=",i,j); lprint([seq(w2(i,j,n),n=1..100)]); od: od: for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do lprint("name=",i,j,k); lprint([seq(w3(i,j,k,n),n=1..100)]); od: od: od:
With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *) Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
a(n)=floor(n*(sqrt(5)+3)/2)-1
a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
from sympy import floor from mpmath import phi def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
from math import isqrt def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022
t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];
Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
from sympy import floor from mpmath import phi def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
from math import isqrt def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
t := (1+sqrt(5))/2 ; [ seq(5*floor((n+1)*t)+3*n,n=0..80) ];
f[n_] := 5 Floor[(n + 1) GoldenRatio] + 3n; Array[f, 54, 0] (* Robert G. Wilson v, Dec 11 2017 *)
from math import isqrt def A035338(n): return 5*(n+1+isqrt(5*(n+1)**2)>>1)+3*n # Chai Wah Wu, Aug 11 2022
Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
# For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
A[n_] := Floor[n GoldenRatio]; a[n_] := A@ A@ A@ n; a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
from math import isqrt def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[A[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def B(n): return floor(n*phi**2) def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
from math import isqrt def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def B(n): return floor(n*phi**2) def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
from math import isqrt def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022
a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *) b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
from sympy import floor from mpmath import phi def B(n): return floor(n*phi**2) def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
from math import isqrt def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
from sympy import floor from mpmath import phi def A(n): return floor(n*phi) def B(n): return floor(n*phi**2) def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
from math import isqrt def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022
a[n_] = 2 Floor[(n + 1) GoldenRatio^2] - n - 3; a /@ Range[100] (* Jean-François Alcover, Oct 28 2019, after Vladeta Jovovic *)
from sympy import fibonacci def a(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return x def ok(n): return str(a(n))[-3:]=="001" print([n for n in range(1, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
Comments