A003622
The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.
Original entry on oeis.org
1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
Offset: 1
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
- C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
- D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
- N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (terms 1.1000 from T. D. Noe)
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 62.
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012. - _N. J. A. Sloane_, Jun 10 2012
- Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), Article 15.11.8.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- Clark Kimberling, Interspersions.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008), Article 08.3.3.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See pp. 5-6.
- L. Lindroos, A. Sills, and H. Wang, Odd fibbinary numbers and the golden ratio, Fib. Q., 52 (2014), 61-65.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 3.
- Mathematics Stack Exchange, Golden ratio and floor function floor(phi^2*n) - floor(phi*floor(phi*n)) = 1.
- M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.5.
- N. J. A. Sloane, Classic Sequences
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), Article P2.52.
The Wythoff compound sequences: Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A000201 as the parent:
A000201,
A001030,
A001468,
A001950,
A003622,
A003842,
A003849,
A004641,
A005614,
A014675,
A022342,
A088462,
A096270,
A114986,
A124841. -
N. J. A. Sloane, Mar 11 2021
-
a003622 n = a003622_list !! (n-1)
a003622_list = filter ((elem 1) . a035516_row) [1..]
-- Reinhard Zumkeller, Mar 10 2013
-
A003622 := proc(n)
n+floor(n*(1+sqrt(5))/2)-1 ;
end proc: # R. J. Mathar, Jan 25 2015
# Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
# The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
# Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
read out1; read out2; b[0]:=b1: b[1]:=b2:
w2:=(i,j,n)->b[i][b[j][n]];
w3:=(i,j,k,n)->b[i][b[j][b[k][n]]];
for i from 0 to 1 do
lprint("name=",i);
lprint([seq(b[i][n],n=1..100)]):
od:
for i from 0 to 1 do for j from 0 to 1 do
lprint("name=",i,j);
lprint([seq(w2(i,j,n),n=1..100)]);
od: od:
for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
lprint("name=",i,j,k);
lprint([seq(w3(i,j,k,n),n=1..100)]);
od: od: od:
-
With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *)
Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
-
a(n)=floor(n*(sqrt(5)+3)/2)-1
-
a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
-
from sympy import floor
from mpmath import phi
def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
-
from math import isqrt
def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022
A035337
Third column of Wythoff array.
Original entry on oeis.org
3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312
Offset: 0
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
- N. J. A. Sloane, Classic Sequences.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];
-
Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
-
a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
-
from sympy import floor
from mpmath import phi
def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
-
from math import isqrt
def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
A035338
4th column of Wythoff array.
Original entry on oeis.org
5, 18, 26, 39, 52, 60, 73, 81, 94, 107, 115, 128, 141, 149, 162, 170, 183, 196, 204, 217, 225, 238, 251, 259, 272, 285, 293, 306, 314, 327, 340, 348, 361, 374, 382, 395, 403, 416, 429, 437, 450, 458, 471, 484, 492, 505, 518, 526, 539, 547, 560, 573, 581, 594
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 5.
- John H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
- N. J. A. Sloane, Classic Sequences.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
t := (1+sqrt(5))/2 ; [ seq(5*floor((n+1)*t)+3*n,n=0..80) ];
-
f[n_] := 5 Floor[(n + 1) GoldenRatio] + 3n; Array[f, 54, 0] (* Robert G. Wilson v, Dec 11 2017 *)
-
from math import isqrt
def A035338(n): return 5*(n+1+isqrt(5*(n+1)**2)>>1)+3*n # Chai Wah Wu, Aug 11 2022
A134859
Wythoff AAA numbers.
Original entry on oeis.org
1, 6, 9, 14, 19, 22, 27, 30, 35, 40, 43, 48, 53, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 108, 111, 116, 119, 124, 129, 132, 137, 142, 145, 150, 153, 158, 163, 166, 171, 174, 179, 184, 187, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242
Offset: 1
Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math. 24 (2010), no. 2, 570-588.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), Article 15.11.8.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008), Article 08.3.3.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See pp. 5-6.
Cf.
A001622,
A000201,
A001950,
A003622,
A003623,
A035336,
A098317,
A101864,
A134860,
A035337,
A134861,
A134862,
A134863,
A035338,
A134864,
A035513.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
# For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
-
A[n_] := Floor[n GoldenRatio];
a[n_] := A@ A@ A@ n;
a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
-
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
-
from math import isqrt
def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022
A134860
Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.
Original entry on oeis.org
4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - _N. J. A. Sloane_, May 06 2011
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, Vol. 11 (2008), Article 08.3.3.
Cf.
A000201,
A001622,
A001950,
A003622,
A003623,
A035336,
A101864,
A134859,
A035337,
A134861,
A134862,
A134863,
A035338,
A134864,
A035513.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &,Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
-
from sympy import fibonacci
def a(n):
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
def ok(n): return str(a(n))[-3:]=="101"
print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
-
from math import isqrt
def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022
This is the result of merging two sequences which were really the same. -
N. J. A. Sloane, Jun 10 2017
A134862
Wythoff ABB numbers.
Original entry on oeis.org
8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
Offset: 1
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 5.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008), Article 08.3.3.
Cf.
A000201,
A001950,
A003622,
A003623,
A035336,
A101864,
A134859,
A035337,
A134860,
A134861,
A134863,
A035338,
A134864,
A035513,
A244593.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
-
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
-
from math import isqrt
def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022
A134864
Wythoff BBB numbers.
Original entry on oeis.org
13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
Offset: 1
Cf.
A000201,
A001950,
A003622,
A003623,
A035336,
A094214,
A101864,
A134859,
A035337,
A134860,
A134861,
A134862,
A035338,
A134863,
A035513.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
-
Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
-
from sympy import floor
from mpmath import phi
def B(n): return floor(n*phi**2)
def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
-
from math import isqrt
def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022
A134863
Wythoff BAB numbers.
Original entry on oeis.org
7, 20, 28, 41, 54, 62, 75, 83, 96, 109, 117, 130, 143, 151, 164, 172, 185, 198, 206, 219, 227, 240, 253, 261, 274, 287, 295, 308, 316, 329, 342, 350, 363, 376, 384, 397, 405, 418, 431, 439, 452, 460, 473, 486, 494, 507, 520, 528, 541, 549, 562, 575, 583, 596
Offset: 1
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 5.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008), Article 08.3.3.
Cf.
A000201,
A001950,
A003622,
A003623,
A035336,
A101864,
A134859,
A035337,
A134860,
A134861,
A134862,
A035338,
A134864,
A035513,
A244593.
Let A =
A000201, B =
A001950. Then AA =
A003622, AB =
A003623, BA =
A035336, BB =
A101864. The eight triples AAA, AAB, ..., BBB are
A134859,
A134860,
A035337,
A134862,
A134861,
A134863,
A035338,
A134864, resp.
-
A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
-
from sympy import floor
from mpmath import phi
def A(n): return floor(n*phi)
def B(n): return floor(n*phi**2)
def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
-
from math import isqrt
def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022
A246355
Rectangular array: T(n,k) is the position in the infinite Fibonacci word s = A003849 at which the block s(2)..s(n+1) occurs for the k-th time.
Original entry on oeis.org
2, 5, 2, 7, 5, 2, 10, 7, 7, 2, 13, 10, 10, 7, 2, 15, 13, 15, 10, 7, 2, 18, 15, 20, 15, 10, 10, 2, 20, 18, 23, 20, 15, 15, 10, 2, 23, 20, 28, 23, 20, 23, 15, 10, 2, 26, 23, 31, 28, 23, 31, 23, 15, 10, 2, 28, 26, 36, 31, 28, 36, 31, 23, 15, 10, 2, 31, 28, 41
Offset: 1
The upper Wythoff sequence, A001950 gives the positions of 1 in A003849, which begins thus: 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1. For n = 1, the block s(2)..s(2) is simply 1, which occurs at positions 2,5,7,10,13,... as in row 1 of T. For n = 5, the block s(2)..s(6) is 1,0,0,1,0 which occurs at positions 2,7,10,15,20,23, ...
The first 6 rows follow:
2 .. 5 .. 7 ... 10 .. 13 .. 15 .. 18 ...
2 .. 5 .. 7 ... 10 .. 13 .. 15 .. 18 ...
2 .. 7 .. 10 .. 15 .. 20 .. 23 .. 28 ...
2 .. 7 .. 10 .. 15 .. 20 .. 23 .. 28 ...
2 .. 7 .. 10 .. 15 .. 20 .. 23 .. 28 ...
2 .. 10 . 15 .. 23 .. 31 .. 36 .. 44 ...
-
z = 1000; s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; Flatten[Position[s, 1]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; z1 = 500; z2 = 12; t[k_] := t[k] = Take[Select[Range[1, z1], b[#, # + k] == b[2, 2 + k] &], z2]; Column[Table[t[k], {k, 0, z2}]](* A246355, array *)
w[n_, k_] := t[n][[k + 1]]; Table[w[n - k, k], {n, 0, z2 - 1}, {k, n, 0, -1}] // Flatten (* A246355, sequence *)
A372302
Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".
Original entry on oeis.org
6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1
Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
10000:
1000: 01000:
10: 010: 0010:
1010: 01010:
100: 0100:
1: 01: 001: 0001:
1001: 01001:
101: 0101:
Suffixes 10^n, where ^ means n times repeated concatenation, are the (n+1)-th columns in the Wythoff array
A083412 and
A035513 (n >= 0).
Showing 1-10 of 10 results.
Comments