cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1

Views

Author

Keywords

Comments

Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023

Examples

			From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
		

References

  • Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
  • Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a001950 n = a000201 n + n  -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    A001950 := proc(n)
        floor(n*(3+sqrt(5))/2) ;
    end proc:
    seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)
    
  • PARI
    A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
    
  • Python
    from math import isqrt
    def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012

Extensions

Corrected by Michael Somos, Jun 07 2000

A003622 The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
Offset: 1

Views

Author

Keywords

Comments

Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
{a(n)} is the unique monotonic sequence of positive integers such that {a(n)} and {b(n)}: b(n) = a(n) - n form a partition of the nonnegative integers. - Yifan Xie, Jan 25 2025

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
  • N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.

Crossrefs

Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003622 n = a003622_list !! (n-1)
    a003622_list = filter ((elem 1) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    A003622 := proc(n)
        n+floor(n*(1+sqrt(5))/2)-1 ;
    end proc: # R. J. Mathar, Jan 25 2015
    # Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
    # The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
    # Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
    read out1; read out2; b[0]:=b1: b[1]:=b2:
    w2:=(i,j,n)->b[i][b[j][n]];
    w3:=(i,j,k,n)->b[i][b[j][b[k][n]]];
    for i from 0 to 1 do
    lprint("name=",i);
    lprint([seq(b[i][n],n=1..100)]):
    od:
    for i from 0 to 1 do for j from 0 to 1 do
    lprint("name=",i,j);
    lprint([seq(w2(i,j,n),n=1..100)]);
    od: od:
    for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
    lprint("name=",i,j,k);
    lprint([seq(w3(i,j,k,n),n=1..100)]);
    od: od: od:
  • Mathematica
    With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *)
    Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)-1
    
  • PARI
    a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
    
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
    
  • Python
    from math import isqrt
    def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

A035337 Third column of Wythoff array.

Original entry on oeis.org

3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312
Offset: 0

Views

Author

Keywords

Comments

Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - Michel Dekking, Aug 31 2017
From Amiram Eldar, Mar 21 2022: (Start)
Numbers k for which the Zeckendorf representation A014417(k) ends with 1, 0, 0.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). (End)

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];
  • Mathematica
    Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
  • PARI
    a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
    

Formula

a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - Michel Dekking, Aug 31 2017
It appears that a(n) = 3*A003622(n) - n + 1. - John W. Layman, Aug 25 2011

A035338 4th column of Wythoff array.

Original entry on oeis.org

5, 18, 26, 39, 52, 60, 73, 81, 94, 107, 115, 128, 141, 149, 162, 170, 183, 196, 204, 217, 225, 238, 251, 259, 272, 285, 293, 306, 314, 327, 340, 348, 361, 374, 382, 395, 403, 416, 429, 437, 450, 458, 471, 484, 492, 505, 518, 526, 539, 547, 560, 573, 581, 594
Offset: 0

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    t := (1+sqrt(5))/2 ; [ seq(5*floor((n+1)*t)+3*n,n=0..80) ];
  • Mathematica
    f[n_] := 5 Floor[(n + 1) GoldenRatio] + 3n; Array[f, 54, 0] (* Robert G. Wilson v, Dec 11 2017 *)
  • Python
    from math import isqrt
    def A035338(n): return 5*(n+1+isqrt(5*(n+1)**2)>>1)+3*n # Chai Wah Wu, Aug 11 2022

A134859 Wythoff AAA numbers.

Original entry on oeis.org

1, 6, 9, 14, 19, 22, 27, 30, 35, 40, 43, 48, 53, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 108, 111, 116, 119, 124, 129, 132, 137, 142, 145, 150, 153, 158, 163, 166, 171, 174, 179, 184, 187, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAA = AB - 2 and AAA = A + B - 2.
Also numbers with suffix string 001, when written in Zeckendorf representation (with leading zero for the first term). - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^3 = phi^3 - 4 = A098317 - 4 = 0.236067... . - Amiram Eldar, Mar 24 2025

Examples

			Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
		

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Essentially the same as A095098.

Programs

  • Maple
    # For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    A[n_] := Floor[n GoldenRatio];
    a[n_] := A@ A@ A@ n;
    a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(A(n))), n >= 1, with A=A000201, the lower Wythoff sequence.
a(n) = 2*floor(n*Phi^2) - n - 2 where Phi = (1+sqrt(5))/2. - Benoit Cloitre, Apr 12 2008; R. J. Mathar, Oct 16 2009
a(n) = A095098(n-1), n > 1. - R. J. Mathar, Oct 16 2009
From A.H.M. Smeets, Mar 23 2024: (Start)
a(n) = A(n) + B(n) - 2 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A003622}\{A134860} (= Wythoff AA \ Wythoff AAB). (End)

Extensions

Incorrect PARI program removed by R. J. Mathar, Oct 16 2009

A134860 Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.

Original entry on oeis.org

4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004 and Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAB=AA+AB and AAB=A+2B-1.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 21 2022

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Set-wise difference A003622 \ A095098. Cf. A095089 (fib101 primes).

Programs

  • Mathematica
    With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &,Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
  • Python
    from sympy import fibonacci
    def a(n):
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n): return str(a(n))[-3:]=="101"
    print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
    
  • Python
    from math import isqrt
    def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

Extensions

This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017

A134861 Wythoff BAA numbers.

Original entry on oeis.org

2, 10, 15, 23, 31, 36, 44, 49, 57, 65, 70, 78, 86, 91, 99, 104, 112, 120, 125, 133, 138, 146, 154, 159, 167, 175, 180, 188, 193, 201, 209, 214, 222, 230, 235, 243, 248, 256, 264, 269, 277, 282, 290, 298, 303, 311, 319, 324, 332, 337, 345, 353, 358, 366, 371
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAA = A+2B-3.
Also numbers with suffix string 0010, when written in Zeckendorf representation (with leading zero's for the first term). - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[A[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(A(A(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134862 Wythoff ABB numbers.

Original entry on oeis.org

8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation ABB = 2A+3B.
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(B(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134863 Wythoff BAB numbers.

Original entry on oeis.org

7, 20, 28, 41, 54, 62, 75, 83, 96, 109, 117, 130, 143, 151, 164, 172, 185, 198, 206, 219, 227, 240, 253, 261, 274, 287, 295, 308, 316, 329, 342, 350, 363, 376, 384, 397, 405, 418, 431, 439, 452, 460, 473, 486, 494, 507, 520, 528, 541, 549, 562, 575, 583, 596
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAB = 2A+3B-1.
Also numbers with suffix string 1010, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 24 2024
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = B(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
From A.H.M. Smeets, Mar 24 2024: (Start)
a(n) = 2*A(n) + 3*B(n) - 1 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A035336}\{A134861} (= Wythoff BA \ Wythoff BAA). (End)
Showing 1-10 of 10 results.