cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A035513 Wythoff array read by falling antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1

Views

Author

Keywords

Comments

T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy
Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - Howard A. Landman, Sep 25 2001
The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - Clark Kimberling, Feb 08 2003
For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - Gerald McGarvey, Sep 18 2004
From Clark Kimberling, Nov 14 2007: (Start)
Except for initial terms in some cases:
(Row 1) = A000045
(Row 2) = A000032
(Row 3) = A006355
(Row 4) = A022086
(Row 5) = A022087
(Row 6) = A000285
(Row 7) = A022095
(Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
(Row 9) = A022112
(Column 1) = A003622 = AA Wythoff sequence
(Column 2) = A035336 = BA Wythoff sequence
(Column 3) = A035337 = ABA Wythoff sequence
(Column 4) = A035338 = BBA Wythoff sequence
(Column 5) = A035339 = ABBA Wythoff sequence
(Column 6) = A035340 = BBBA Wythoff sequence
Main diagonal = A020941. (End)
The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - Clark Kimberling, Jun 03 2011
If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - Clark Kimberling, Jun 17 2016
All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - Michel Dekking, Aug 31 2017
The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - Luc Rousseau, Sep 28 2017
Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - Clark Kimberling, Mar 05 2020
From Clark Kimberling, May 26 2020: (Start)
For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n. Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)). Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1. Thus, in the limiting sense:
38.19...% of the numbers m have least term 1;
23.60...% have least term 2;
14.58...% have least term 3;
9.01...% have least term 5, etc. (End)
Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - Amiram Eldar, Jun 11 2021
From Clark Kimberling, Jun 04 2025: (Start)
Let u(n) = (T(n,1),T(n,2)) mod 2. The positive integers (A000027) are partitioned into 4 sets (sequences):
{n : u(n) = (0,0)} = (3, 5, 9, 15, 19, 25, 29,...) = 1 + 2*A190429
{n: u(n) = (0,1)} = (2, 6, 12, 16, 18, 22, 28,...) = A191331
{n : u(n) = (1,0)} = (1, 7, 11, 13, 17, 21, 23,...) = A086843
{n: u(n) = (1,1)} = (4, 8, 10, 14, 20, 24, 26,...) = A191330.
Let v(n) = (T(n,1),T(n,2)) mod 3. The positive integers are partitioned into 9 sets (sequences):
{n : v(n) = (0,0)} = (4, 13, 19, 28, 43, 52,...) = 1 + 3*A190434
{n: v(n) = (0,1)} = (3, 12, 27, 36, 42, 51,...) = 3*A140399
{n : v(n) = (0,2)} = (5, 11, 20, 35, 44, 50,...) = 2 + 3*A190439
{n: v(n) = (1,0)} = (9, 18, 24, 33, 48, 57,...) = 3*A140400
{n: v(n) = (1,1)} = (2, 8, 17, 26, 32, 41,...) = A384601
{n : v(n) = (1,2)} = (1, 10, 16, 25, 34, 40,...) = A384602
{n: v(n) = (2,0)} = (14, 23, 29, 38, 47, 53,...) = 2 + 3*A190438
{n: v(n) = (2,1)} = (7, 22, 31, 37, 46, 61,...) = 1 + 3*A190433
{n : v(n) = (2,2)} = (6, 15, 21, 30, 39, 45,...) = 3*A140398.
Conjecture: If m >= 2, then {(T(n,1), T(n,2)) mod m} has cardinality m^2. (End)

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
  25   41   66  107  173  280  453  733 1186 1919 3105 ...
  27   44   71  115  186  301  487  788 1275 2063 3338 ...
  ...
The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0     1  |   1    2    3    5    8   13   21   34   55   89  144   ...
1     3  |   4    7   11   18   29   47   76  123  199  322  521   ...
2     4  |   6   10   16   26   42   68  110  178  288  466  754   ...
3     6  |   9   15   24   39   63  102  165  267  432  699 1131   ...
4     8  |  12   20   32   52   84  136  220  356  576  932 1508   ...
5     9  |  14   23   37   60   97  157  254  411  665 1076 1741   ...
6    11  |  17   28   45   73  118  191  309  500  809 1309 2118   ...
7    12  |  19   31   50   81  131  212  343  555  898 1453 2351   ...
8    14  |  22   36   58   94  152  246  398  644 1042 1686 2728   ...
9    16  |  25   41   66  107  173  280  453  733 1186 1919 3105   ...
10   17  |  27   44   71  115  186  301  487  788 1275 2063 3338   ...
11   19  |  30   49   79   ...
12   21  |  33   54   87   ...
13   22  |  35   57   92   ...
14   24  |  38   62   ...
15   25  |  40   65   ...
16   27  |  43   70   ...
17   29  |  46   75   ...
18   30  |  48   78   ...
19   32  |  51   83   ...
20   33  |  53   86   ...
21   35  |  56   91   ...
22   37  |  59   96   ...
23   38  |  61   99   ...
24   40  |  64   ...
25   42  |  67   ...
26   43  |  69   ...
27   45  |  72   ...
28   46  |  74   ...
29   48  |  77   ...
30   50  |  80   ...
31   51  |  82   ...
32   53  |  85   ...
33   55  |  88   ...
34   56  |  90   ...
35   58  |  93   ...
36   59  |  95   ...
37   61  |  98   ...
38   63  |     ...
   ...
Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
From _Peter Munn_, Jun 11 2021: (Start)
The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
Give each rabbit a number, 0 for the initial rabbit.
When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
                                                                 0
                                                                 :
                                       ,-------------------------:
                                       :                         :
                       ,---------------:                         1
                       :               :                         :
              ,--------:               2               ,---------:
              :        :               :               :         :
        ,-----:        3         ,-----:         ,-----:         4
        :     :        :         :     :         :     :         :
     ,--:     5     ,--:     ,---:     6     ,---:     7     ,---:
     :  :     :     :  :     :   :     :     :   :     :     :   :
  ,--:  8  ,--:  ,--:  9  ,--:  10  ,--:  ,--:  11  ,--:  ,--:  12
  :  :  :  :  :  :  :  :  :  :   :  :  :  :  :   :  :  :  :  :   :
  : 13  :  : 14  : 15  :  : 16   :  : 17  : 18   :  : 19  : 20   :
The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
(End)
		

References

  • John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.

Crossrefs

See comments above for more cross-references.
Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
For two versions of the extended Wythoff array, see A287869, A287870.

Programs

  • Maple
    W:= proc(n,k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0,1], [1,1]])^(k+1))[1,2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
    A035513 := proc(r, c)
        option remember;
        if c = 1 then
            A003622(r) ;
        else
            A022342(1+procname(r, c-1)) ;
        end if;
    end proc:
    seq(seq(A035513(r,d-r),r=1..d-1),d=2..15) ; # R. J. Mathar, Jan 25 2015
  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
  • PARI
    T(n,k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
    for(k=0,9,for(n=1,k, print1(T(n,k+1-n)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Python
    from sympy import fibonacci as F, sqrt
    import math
    tau = (sqrt(5) + 1)/2
    def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
    for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 23 2017
    
  • Python
    from math import isqrt, comb
    from gmpy2 import fib2
    def A035513(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        b, c = fib2(a-x+2)
        return b*(x+isqrt(5*x*x)>>1)+c*(x-1) # Chai Wah Wu, Jun 26 2025

Formula

T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - Henry Bottomley, Dec 10 2001
T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - R. J. Mathar, Sep 03 2016

Extensions

Comments about the extended Wythoff array added by N. J. A. Sloane, Mar 07 2016

A003622 The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
Offset: 1

Keywords

Comments

Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
{a(n)} is the unique monotonic sequence of positive integers such that {a(n)} and {b(n)}: b(n) = a(n) - n form a partition of the nonnegative integers. - Yifan Xie, Jan 25 2025

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
  • N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.

Crossrefs

Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003622 n = a003622_list !! (n-1)
    a003622_list = filter ((elem 1) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    A003622 := proc(n)
        n+floor(n*(1+sqrt(5))/2)-1 ;
    end proc: # R. J. Mathar, Jan 25 2015
    # Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
    # The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
    # Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
    read out1; read out2; b[0]:=b1: b[1]:=b2:
    w2:=(i,j,n)->b[i][b[j][n]];
    w3:=(i,j,k,n)->b[i][b[j][b[k][n]]];
    for i from 0 to 1 do
    lprint("name=",i);
    lprint([seq(b[i][n],n=1..100)]):
    od:
    for i from 0 to 1 do for j from 0 to 1 do
    lprint("name=",i,j);
    lprint([seq(w2(i,j,n),n=1..100)]);
    od: od:
    for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
    lprint("name=",i,j,k);
    lprint([seq(w3(i,j,k,n),n=1..100)]);
    od: od: od:
  • Mathematica
    With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *)
    Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)-1
    
  • PARI
    a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
    
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
    
  • Python
    from math import isqrt
    def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

A035337 Third column of Wythoff array.

Original entry on oeis.org

3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312
Offset: 0

Keywords

Comments

Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - Michel Dekking, Aug 31 2017
From Amiram Eldar, Mar 21 2022: (Start)
Numbers k for which the Zeckendorf representation A014417(k) ends with 1, 0, 0.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). (End)

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n,n=0..80) ];
  • Mathematica
    Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *)
  • PARI
    a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A035337(n): return 3*(n+isqrt(5*n**2)>>1)+(n-1<<1) # Chai Wah Wu, Aug 11 2022
    

Formula

a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - Michel Dekking, Aug 31 2017
It appears that a(n) = 3*A003622(n) - n + 1. - John W. Layman, Aug 25 2011

A134859 Wythoff AAA numbers.

Original entry on oeis.org

1, 6, 9, 14, 19, 22, 27, 30, 35, 40, 43, 48, 53, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 108, 111, 116, 119, 124, 129, 132, 137, 142, 145, 150, 153, 158, 163, 166, 171, 174, 179, 184, 187, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242
Offset: 1

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAA = AB - 2 and AAA = A + B - 2.
Also numbers with suffix string 001, when written in Zeckendorf representation (with leading zero for the first term). - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^3 = phi^3 - 4 = A098317 - 4 = 0.236067... . - Amiram Eldar, Mar 24 2025

Examples

			Starting with A=(1,3,4,6,8,9,11,12,14,16,17,19,...), we have A(2)=3, so A(A(2))=4, so A(A(A(2)))=6.
		

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Essentially the same as A095098.

Programs

  • Maple
    # For Maple code for these Wythoff compound sequences see A003622. - N. J. A. Sloane, Mar 30 2016
  • Mathematica
    A[n_] := Floor[n GoldenRatio];
    a[n_] := A@ A@ A@ n;
    a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def a(n): return A(A(A(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134859(n): return ((n+isqrt(5*n**2)>>1)-1<<1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(A(n))), n >= 1, with A=A000201, the lower Wythoff sequence.
a(n) = 2*floor(n*Phi^2) - n - 2 where Phi = (1+sqrt(5))/2. - Benoit Cloitre, Apr 12 2008; R. J. Mathar, Oct 16 2009
a(n) = A095098(n-1), n > 1. - R. J. Mathar, Oct 16 2009
From A.H.M. Smeets, Mar 23 2024: (Start)
a(n) = A(n) + B(n) - 2 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A003622}\{A134860} (= Wythoff AA \ Wythoff AAB). (End)

Extensions

Incorrect PARI program removed by R. J. Mathar, Oct 16 2009

A134860 Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.

Original entry on oeis.org

4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
Offset: 1

Author

Antti Karttunen, Jun 01 2004 and Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAB=AA+AB and AAB=A+2B-1.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 21 2022

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Set-wise difference A003622 \ A095098. Cf. A095089 (fib101 primes).

Programs

  • Mathematica
    With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &,Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
  • Python
    from sympy import fibonacci
    def a(n):
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n): return str(a(n))[-3:]=="101"
    print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
    
  • Python
    from math import isqrt
    def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

Extensions

This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017

A134861 Wythoff BAA numbers.

Original entry on oeis.org

2, 10, 15, 23, 31, 36, 44, 49, 57, 65, 70, 78, 86, 91, 99, 104, 112, 120, 125, 133, 138, 146, 154, 159, 167, 175, 180, 188, 193, 201, 209, 214, 222, 230, 235, 243, 248, 256, 264, 269, 277, 282, 290, 298, 303, 311, 319, 324, 332, 337, 345, 353, 358, 366, 371
Offset: 1

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAA = A+2B-3.
Also numbers with suffix string 0010, when written in Zeckendorf representation (with leading zero's for the first term). - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[A[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(A(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134861(n): return 3*((n+isqrt(5*n**2)>>1)-1)+(n<<1) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(A(A(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134862 Wythoff ABB numbers.

Original entry on oeis.org

8, 21, 29, 42, 55, 63, 76, 84, 97, 110, 118, 131, 144, 152, 165, 173, 186, 199, 207, 220, 228, 241, 254, 262, 275, 288, 296, 309, 317, 330, 343, 351, 364, 377, 385, 398, 406, 419, 432, 440, 453, 461, 474, 487, 495, 508, 521, 529, 542, 550, 563, 576, 584, 597
Offset: 1

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation ABB = 2A+3B.
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := A[B[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return A(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134862(n): return 5*(n+isqrt(5*n**2)>>1)+3*n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(B(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

A134864 Wythoff BBB numbers.

Original entry on oeis.org

13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
Offset: 1

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BBB = 3A+5B.
The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
  • Mathematica
    Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
    b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def B(n): return floor(n*phi**2)
    def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.

A134863 Wythoff BAB numbers.

Original entry on oeis.org

7, 20, 28, 41, 54, 62, 75, 83, 96, 109, 117, 130, 143, 151, 164, 172, 185, 198, 206, 219, 227, 240, 253, 261, 274, 287, 295, 308, 316, 329, 342, 350, 363, 376, 384, 397, 405, 418, 431, 439, 452, 460, 473, 486, 494, 507, 520, 528, 541, 549, 562, 575, 583, 596
Offset: 1

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAB = 2A+3B-1.
Also numbers with suffix string 1010, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 24 2024
The asymptotic density of this sequence is 1/phi^5 = phi^5 - 11 = A244593 - 4 = 0.0901699... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Mathematica
    A[n_] := Floor[n * GoldenRatio]; B[n_] := Floor[n * GoldenRatio^2]; a[n_] := B[A[B[n]]]; Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def A(n): return floor(n*phi)
    def B(n): return floor(n*phi**2)
    def a(n): return B(A(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = B(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.
From A.H.M. Smeets, Mar 24 2024: (Start)
a(n) = 2*A(n) + 3*B(n) - 1 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively.
Equals {A035336}\{A134861} (= Wythoff BA \ Wythoff BAA). (End)

A035339 5th column of Wythoff array.

Original entry on oeis.org

8, 29, 42, 63, 84, 97, 118, 131, 152, 173, 186, 207, 228, 241, 262, 275, 296, 317, 330, 351, 364, 385, 406, 419, 440, 461, 474, 495, 508, 529, 550, 563, 584, 605, 618, 639, 652, 673, 694, 707, 728, 741, 762, 783, 796, 817, 838, 851, 872, 885, 906, 927, 940, 961
Offset: 0

Keywords

Comments

The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Column k of A035513: A003622 (k=1), A035336 (k=2), A035337 (k=3), A035338 (k=4), this sequence (k=5), A035340 (k=6).
Cf. A094214.

Programs

  • Maple
    t:= (1+sqrt(5))/2: [ seq(8*floor((n+1)*t)+5*n,n=0..80) ];
  • Mathematica
    a[n_] := 8 * Floor[n * GoldenRatio] + 5*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
Showing 1-10 of 14 results. Next