A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A035340 6th column of Wythoff array.
13, 47, 68, 102, 136, 157, 191, 212, 246, 280, 301, 335, 369, 390, 424, 445, 479, 513, 534, 568, 589, 623, 657, 678, 712, 746, 767, 801, 822, 856, 890, 911, 945, 979, 1000, 1034, 1055, 1089, 1123, 1144, 1178, 1199, 1233, 1267, 1288, 1322, 1356, 1377, 1411, 1432
Offset: 0
Keywords
Comments
The asymptotic density of this sequence is 1/phi^7 = A094214^7 = 0.03444185... . - Amiram Eldar, Mar 24 2025
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- John H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Programs
-
Maple
t:= (1+sqrt(5))/2: [ seq(13*floor((n+1)*t)+8*n,n=0..80) ];
-
Mathematica
a[n_] := 13 * Floor[n * GoldenRatio] + 8*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
A134570 Array T(n,k) by antidiagonals; T(n,k) = position in row n of k-th occurrence of the Fibonacci number F(2n+1) in A134566.
2, 5, 1, 7, 4, 3, 10, 6, 11, 8, 13, 9, 16, 29, 21, 15, 12, 24, 42, 76, 55, 18, 14, 32, 63, 110, 199, 144, 20, 17, 37, 84, 165, 288, 521, 377, 23, 19, 45, 97, 220, 432, 754
Offset: 1
Comments
(Row 1) = A001950, the upper Wythoff sequence (Row 2) = (Column 1 of Wythoff array) = A003622 (Row 3) = (Column 3 of Wythoff array) = A035337 (Row 4) = (Column 5 of Wythoff array) = A035339 Except for initial terms, the first two columns of A134570 are bisected Fibonacci and Lucas sequences, A001906 and A002878, resp. Row 1 is the ordered union of all even-numbered columns of the Wythoff array; and A134570 is a permutation of the positive integers.
Examples
Northwest corner: 2 5 7 10 13 15 18 20 23 26 1 4 6 9 12 14 3 11 16 24 32 37 8 29 42 63 84 97 Row 1 consists of numbers k such that 1 is the least m for which {-m*tau}>{k*tau}, where tau=(1+sqrt(5))/2 and {} denotes fractional part.
A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".
6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
Crossrefs
Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions