A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A035339 5th column of Wythoff array.
8, 29, 42, 63, 84, 97, 118, 131, 152, 173, 186, 207, 228, 241, 262, 275, 296, 317, 330, 351, 364, 385, 406, 419, 440, 461, 474, 495, 508, 529, 550, 563, 584, 605, 618, 639, 652, 673, 694, 707, 728, 741, 762, 783, 796, 817, 838, 851, 872, 885, 906, 927, 940, 961
Offset: 0
Keywords
Comments
The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- John H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Programs
-
Maple
t:= (1+sqrt(5))/2: [ seq(8*floor((n+1)*t)+5*n,n=0..80) ];
-
Mathematica
a[n_] := 8 * Floor[n * GoldenRatio] + 5*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)
A134571 Array T(n,k) by antidiagonals; T(n,k) = position in row n of k-th occurrence of the Fibonacci number F(2n) in A134567.
1, 3, 2, 4, 7, 5, 6, 10, 18, 13, 8, 15, 26, 47, 34, 9, 20, 39, 68, 123, 89, 11, 23, 52, 102, 178, 322, 233
Offset: 1
Comments
(Row 1) = A000201, the lower Wythoff sequence (Row 2) = (Column 2 of Wythoff array) = A035336 (Row 3) = (Column 4 of Wythoff array) = A035338 (Row 4) = (Column 6 of Wythoff array) = A035340 (Column 1) = A001519 (bisection of Fibonacci sequence) (Column 2) = A005248 (bisection of Lucas sequence) (Column 3) = A052995 Row 1 is the ordered union of all odd-numbered columns of the Wythoff array; and A134571 is a permutation of the positive integers.
It looks like this array is A080164 transposed. - Peter Munn, Sep 02 2025
Examples
Northwest corner: 1 3 4 6 8 9 11 12 14 16 2 7 10 15 20 23 5 18 26 39 52 60 13 47 68 102 136 157 Row 1 consists of numbers k such that 1 is the least m for which {-m*tau}<{k*tau}, where tau=(1+sqrt(5))/2 and {} denotes fractional part.
A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".
6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
Crossrefs
Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions