A134873 Primes p with the property that the sum of the digits of the product of the digits of p is also a prime number.
2, 3, 5, 7, 13, 17, 31, 37, 43, 71, 73, 113, 127, 131, 137, 151, 173, 211, 223, 257, 271, 277, 281, 311, 317, 431, 457, 523, 541, 547, 557, 577, 727, 757, 821, 853, 1117, 1151, 1171, 1187, 1217, 1223, 1277, 1427, 1451, 1481, 1511, 1523
Offset: 1
Examples
2531 is a member of this sequence because it is a prime number and the product of its digits is 2*5*3*1 = 30 and the sum of the digits of this result is 3+0 = 3, which is also a prime number.
Links
- Erich Leistenschneider, Table of n, a(n) for n = 1..4095
- Erich Lestenschneider's Article about this sequence (in Portuguese).
- Erich Leistenschneider, Program used to generate the sequence (Linux)
- Erich Leistenschneider, First 4095 numbers of the sequence
Crossrefs
Subsequence of A038618 (zeroless primes).
Programs
-
Maple
a:=proc(n) local dn,pr,dpr: dn:=convert(n,base,10): pr:=mul(dn[i],i=1..nops(dn)): dpr:=convert(pr,base,10): if isprime(n)=true and isprime(add(dpr[j],j= 1..nops(dpr)))=true then n else end if end proc: seq(a(n),n=1..1600); # Emeric Deutsch, Mar 01 2008
-
Mathematica
Select[Prime[Range[300]],PrimeQ[Total[IntegerDigits[Times@@ IntegerDigits[#]]]]&] (* Harvey P. Dale, Dec 15 2011 *)
-
PARI
isok(p) = isprime(p) && isprime(sumdigits(vecprod(digits(p)))); \\ Michel Marcus, Jan 16 2019