cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134922 Pairs (j, k) of numbers j

Original entry on oeis.org

568, 638, 1704, 1914, 1824, 1836, 2840, 3190, 3051, 3219, 3976, 4466, 4185, 4389, 4960, 5236, 5112, 5742, 6102, 6438, 6368, 6764, 7384, 8294, 7749, 8151, 8370, 8778, 8520, 9570, 9120, 9180, 9184, 9724, 9656, 10846, 9760, 11050, 10792, 12122, 11032, 12470
Offset: 1

Views

Author

Vladimir Letsko, Sep 28 2008, Sep 30 2008, Oct 17 2008

Keywords

Comments

The terms are consecutive pairs, ordered so that (A) a(2i-1) < a(2i) for i > 0, and (B) a(2i+1) < a(2j+1) for 0 <= i < j. Problem 3 in section 7.2 of Burton's book asks the reader to prove a special case of this. - Jud McCranie, Dec 23 2018

Examples

			phi(568) = phi(638) = 280; sigma(568) = sigma(638) = 1080; d(538) = d(638) = 8, so 568 and 638 are in the sequence. - _Jud McCranie_, Dec 23 2018
		

References

  • David Burton, Elementary Number Theory, 4th edition, McGraw-Hill, 1998, section 7.2, problem 3.

Crossrefs

Programs

  • Mathematica
    Select[Values@ PositionIndex@ Array[Append[DivisorSigma[{0, 1}, #], EulerPhi@ #] &, 12500], Length@ # == 2 &] // Flatten (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    isok(n) = {s = sigma(n); ok = 0; if (s > n+1, v = vector(s-n+1, i, sigma(n+i)); for (i = 1, s-n+1, if (v[i] == s, npot = n+i; if ((numdiv(n) == numdiv(npot)) && (eulerphi(n) == eulerphi(npot)), return (npot););););); return (0);} \\ Michel Marcus, Oct 12 2013

Extensions

a(42) from Michel Marcus, Oct 12 2013