A134939 Numerator of the expected number of random moves in Tower of Hanoi problem with n disks starting on peg 1 and ending on peg 3.
0, 2, 64, 1274, 21760, 348722, 5422144, 83000234, 1259729920, 19027002722, 286576949824, 4309163074394, 64731832372480, 971825991711122, 14585021567101504, 218843984372767754, 3283277591489597440, 49254723695591689922, 738870890792896773184, 11083513664870504400314
Offset: 0
Examples
The values of e(0), ..., e(4), e(5) are 0, 2, 64/3, 1274/9, 21760/27, 348722/81.
Links
- M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
- mersenneforum.org, Towers of Hanoi with random moves.
- Index entries for linear recurrences with constant coefficients, signature (32,-342,1440,-2025).
- Index entries for sequences related to Towers of Hanoi
Formula
a(n) = numerator(e(n)) with e(n) = (3^n-1)*(5^n-3^n) / (2*3^(n-1)), a(n) = (3^n-1)*(5^n-3^n) / 2. - Max Alekseyev, Feb 04 2008
G.f.: -2*x*(45*x^2-1) / ((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)). - Colin Barker, Dec 26 2012
Extensions
Values of e(5) onwards and general formula found by Max Alekseyev, Feb 02 2008, Feb 04 2008
Shorter name by Michel Marcus, Dec 27 2012
Comments