A134955 Number of "hyperforests" on n unlabeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.
1, 1, 2, 4, 9, 20, 50, 128, 351, 1009, 3035, 9464, 30479, 100712, 340072, 1169296, 4082243, 14438577, 51643698, 186530851, 679530937, 2494433346, 9219028889, 34280914106, 128179985474, 481694091291, 1818516190252, 6894350122452
Offset: 0
Keywords
Examples
From _Gus Wiseman_, May 20 2018: (Start) Non-isomorphic representatives of the a(4) = 9 spanning hyperforests are the following: {{1,2,3,4}} {{1},{2,3,4}} {{1,2},{3,4}} {{1,4},{2,3,4}} {{1},{2},{3,4}} {{1},{2,4},{3,4}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}} {{1},{2},{3},{4}} Non-isomorphic representatives of the a(4) = 9 hyperforests spanning up to 4 vertices without singleton edges are the following: {} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2},{3,4}} {{1,3},{2,3}} {{1,4},{2,3,4}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}} (End)
References
- D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
- N. J. A. Sloane, Transforms
- Wikipedia, Block graph
Crossrefs
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): aa:= proc(n) option remember; B(n)+C(n) -add(B(k)*C(n-k), k=0..n) end: a:= etr(aa): seq(a(n), n=0..27); # Alois P. Heinz, Sep 09 2008
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[B]; c = etr[b]; B[n_] := If[n == 0, 0, c[n-1]]; CC = etr[B]; aa[n_] := aa[n] = B[n]+CC[n]-Sum[B[k]*CC[n-k], {k, 0, n}]; a = etr[aa]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz*)
-
PARI
\\ here b is A007563 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} seq(n)={my(u=b(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, May 22 2018
Formula
Euler transform of A035053. - N. J. A. Sloane, Jan 30 2008
a(n) = Sum of prod_{k=1}^n\,{A035053(k) + c_k -1 /choose c_k} over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.36483930544... . - Vaclav Kotesovec, Jul 26 2014
Comments