A134972 Decimal expansion of 2 divided by golden ratio = 2/phi = 4/(1 + sqrt(5)) = 2*(-1 + phi).
1, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4, 9, 6, 9, 5
Offset: 1
Examples
1.236067977499789696...
Links
- Michael Penn, How large is the blue ▲, YouTube video, 2021.
- Index entries for algebraic numbers, degree 2.
Programs
-
Mathematica
RealDigits[ N[4/(1+Sqrt[5]), 150] ] [ [1] ] (* Seiichi Kirikami, Mar 14 2012 *)
-
PARI
4/(1+sqrt(5)) \\ Altug Alkan, Apr 11 2016
Formula
2*(-1 + A001622). - Wolfdieter Lang, Feb 17 2016
Equals the harmonic mean of 1 and phi, 2*phi/(1+phi). - Stanislav Sykora, Apr 11 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!-8*n!^2)/(n!^2*3^(2*n+2)).
Equals -1 + Sum_{n>=0} 5*(2*n)!/(n!^2*3^(2*n+1)). (End)
Equals 1/A019863. - R. J. Mathar, Jan 17 2021
Equals 2*sin(Pi/5)/sin(2*Pi/5) = hypergeom([1/5, 3/5], [7/5], 1) = hypergeom([-1/5, -3/5], [3/5], 1). - Peter Bala, Mar 04 2022
Comments