A134974 Decimal expansion of 4*(-1 + phi) = 4*A094214, where the golden ratio phi = A001622.
2, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8
Offset: 1
Examples
2.47213595499957939281834733746255247...
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Wikipedia, Tsallis entropy.
Programs
-
Maple
evalf[100](8/(1+sqrt(5))); # Muniru A Asiru, Dec 19 2018
-
Mathematica
RealDigits[4/GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 30 2016 *)
-
PARI
2*(sqrt(5)-1) \\ or: digits( % \1e-35). - M. F. Hasler, Dec 14 2018
Formula
Equals 4/phi = 8/(1 + sqrt(5)).
Equals 2*(sqrt(5) - 1) = 2*A134972. - M. F. Hasler, Dec 14 2018
Extensions
More terms from Harvey P. Dale, Oct 30 2016
Edited by Wolfdieter Lang, Dec 14 2018
Comments