cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134991 Triangle of Ward numbers T(n,k) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 25, 105, 105, 1, 56, 490, 1260, 945, 1, 119, 1918, 9450, 17325, 10395, 1, 246, 6825, 56980, 190575, 270270, 135135, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025, 1, 1012, 74316, 1487200, 12122110, 47507460, 94594500, 91891800, 34459425
Offset: 1

Views

Author

Tom Copeland, Feb 05 2008

Keywords

Comments

This is the triangle of associated Stirling numbers of the second kind, A008299, read along the diagonals.
This is also a row-reversed version of A181996 (with an additional leading 1) - see the table on p. 92 in the Ward reference. A134685 is a refinement of the Ward table.
The first and second diagonals are A001147 and A000457 and appear in the diagonals of several OEIS entries. The polynomials also appear in Carlitz (p. 85), Drake et al. (p. 8) and Smiley (p. 7).
First few polynomials (with a different offset) are
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 3*t^2
P(4,t) = t + 10*t^2 + 15*t^3
P(5,t) = t + 25*t^2 + 105*t^3 + 105*t^4
These are the "face" numbers of the tropical Grassmannian G(2,n),related to phylogenetic trees (with offset 0 beginning with P(2,t)). Corresponding h-vectors are A008517. - Tom Copeland, Oct 03 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-(1+t) P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
Beginning with the second column, the rows give the faces of the Whitehouse simplicial complex with the fourth-order complex being three isolated vertices and the fifth-order being the Petersen graph with 10 vertices and 15 edges (cf. Readdy). - Tom Copeland, Oct 03 2014
Stratifications of smooth projective varieties which are fine moduli spaces for stable n-pointed rational curves. Cf. pages 20 and 30 of the Kock and Vainsencher reference and references in A134685. - Tom Copeland, May 18 2017
Named after the American mathematician Morgan Ward (1901-1963). - Amiram Eldar, Jun 26 2021

Examples

			Triangle begins:
  1
  1   3
  1  10   15
  1  25  105  105
  1  56  490 1260   945
  1 119 1918 9450 17325 10395
  ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, page 222.

Crossrefs

The same as A269939, with column k = 0 removed.
A reshaped version of the triangle of associated Stirling numbers of the second kind, A008299.
A181996 is the mirror image.
Columns k = 2, 3, 4 are A000247, A000478, A058844.
Diagonal k = n is A001147.
Diagonal k = n - 1 is A000457.
Row sums are A000311.
Alternating row sums are signed factorials (-1)^(n-1)*A000142(n).
Cf. A112493.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; row[n_] := Table[t[k, k-n], {k, n+1, 2*n}]; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 23 2014, after A008299 *)

Formula

E.g.f. for the polynomials is A(x,t) = (x-t)/(t+1) + T{ (t/(t+1)) * exp[(x-t)/(t+1)] }, where T(x) is the Tree function, the e.g.f. of A000169. The compositional inverse in x (about x = 0) is B(x) = x + -t * [exp(x) - x - 1]. Special case t = 1 gives e.g.f. for A000311. These results are a special case of A134685 with u(x) = B(x).
From Tom Copeland, Oct 26 2008: (Start)
Umbral-Sheffer formalism gives, for m a positive integer and u = t/(t+1),
[P(.,t)+Q(.,x)]^m = [m Q(m-1,x) - t Q(m,x)]/(t+1) + sum(n>=1) { n^(n-1)[u exp(-u)]^n/n! [n/(t+1)+Q(.,x)]^m }, when the series is convergent for a sequence of functions Q(n,x).
Check: With t=1; Q(n,x)=0^n, for n>=0; and Q(-1,x)=0, then [P(.,1)+Q(.,x)]^m = P(m,1) = A000311(m).
(End)
Let h(x,t) = 1/(dB(x)/dx) = 1/(1-t*(exp(x)-1)), an e.g.f. in x for row polynomials in t of A019538, then the n-th row polynomial in t of the table A134991, P(n,t), is given by ((h(x,t)*d/dx)^n)x evaluated at x=0, i.e., A(x,t) = exp(x*P(.,t)) = exp(x*h(u,t)*d/du) u evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t). - Tom Copeland, Sep 05 2011
The polynomials (1+t)/t*P(n,t) are the row polynomials of A112493. Let f(x) = (1+x)/(1-x*t). Then for n >= 0, P(n+1,t) is given by t/(1+t)*(f(x)*d/dx)^n(f(x)) evaluated at x = 0. - Peter Bala, Sep 30 2011
From Tom Copeland, Oct 04 2011: (Start)
T(n,k) = (k+1)*T(n-1,k) + (n+k+1)*T(n-1,k-1) with starting indices n=0 and k=0 beginning with P(2,t) (as suggested by a formula of David Speyer on MathOverflow).
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) with starting indices n=1 and k=1 of table (cf. Smiley above and Riordin ref.[10] therein).
P(n,t) = (1/(1+t))^n * Sum_{k>=1} k^(n+k-1)*(u*exp(-u))^k / k! with u=(t/(t+1)) for n>1; therefore, Sum_{k>=1} (-1)^k k^(n+k-1) x^k/k! = [1+LW(x)]^(-n) P{n,-LW(x)/[1+LW(x)]}, with LW(x) the Lambert W-Fct.
T(n,k) = Sum_{i=0..k} ((-1)^i binomial(n+k,i) Sum_{j=0..k-i} (-1)^j (k-i-j)^(n+k-i)/(j!(k-i-j)!)) from relation to A008299. (End)
The e.g.f. A(x,t) = -v * ( Sum_{j=>1} D(j-1,u) (-z)^j / j! ) where u = (x-t)/(1+t), v = 1+u, z = x/((1+t) v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = 1/((1+t)(v-A)) = 1/(1-t*(exp(A)-1)). - Tom Copeland, Oct 06 2011
The general results on the convolution of the refined partition polynomials of A134685, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
E.g.f.: C(u,t) = (u-t)/(1+t) - W( -((t*exp((u-t)/(1+t)))/(1+t)) ), where W is the principal value of the Lambert W-function. - Cheng Peng, Sep 11 2021
The function C(u,t) in the previous formula by Peng is precisely the function A(u,t) given in the initial 2008 formula of this section and the Oct 06 2011 formula from Copeland. As noted in A000169, Euler's tree function is T(x) = -LambertW(-x), where W(x) is the principal branch of Lambert's function, and T(x) is the e.g.f. of A000169. - Tom Copeland, May 13 2022

Extensions

Reference to A181996 added by N. J. A. Sloane, Apr 05 2012
Further edits by N. J. A. Sloane, Jan 24 2020